• 제목/요약/키워드: Bipolar DC-DC converter

Search Result 51, Processing Time 0.024 seconds

Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 기반의 DAB 컨버터)

  • Yun, Hyeok-Jin;Kim, Myoungho;Ryo, Myung-Hyo;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.351-352
    • /
    • 2017
  • 본 논문은 반도체 변압기에 사용되는 3포트 DC-DC 컨버터의 전력 전달 모델링에 대해서 다룬다. 이 DC-DC 컨버터는 고전압 입력에 대응하기 위해 3L-NPC 구조를 가진다. 또한, 양극성 배전망에 적용하기 위해 3권선 변압기와 2차측에 2개의 하프 브릿지 회로를 사용한다. 본 논문에서는 이 특수한 구조 때문에 발생하는 전력 전달 모델링의 복잡성을 단순화하기 위해 분리 행렬을 도입하였다. 제안하는 컨버터와 모델링의 성능은 시뮬레이션 및 15kW 반도체 변압기 시제품을 통해 검증하였다.

  • PDF

A Study on DC Traction Power Supply System Using PWM Converter (PWM컨버터를 적용한 경전철 전력공급시스템에 관한 연구)

  • Kim, Joorak;Park, Chang-Reung;Park, Kijun;Kim, Joo-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.4
    • /
    • pp.250-254
    • /
    • 2016
  • Currently, power conversion system which converts AC to DC Power is applied in domestic urban railway. The diode rectifier is used in most of them. However the diode rectifier can not control the output voltage and can not regenerate power as well. On the other hand, PWM (pulse width modulation) converter using IGBT (isolated gate bipolar transistor) can control output voltage, allowing it to reduce the output voltage drop. Moreover the Bi-directional conduction regenerates power which does not require additional device for power regeneration control. This paper compared the simulation results for the DC power supply system on both the diode rectifier and the PWM converter. Under the same load condition, simulation circuit for each power supply system was constructed with the PSIM (performance simulation and modeling tool) software. The load condition was set according to the resistance value of the currently operating impedance of light rail line, and the line impedance was set according to the distance of each substations. The train was set using a passive resistor. PI (proportional integral) controller was applied to regulate the output voltage. PSIM simulation was conducted to verify that the PWM Converter was more efficient than the diode rectifier in DC Traction power supply system.

Four Novel PWM Shoot-Through Control Methods for Impedance Source DC-DC Converters

  • Vinnikov, Dmitri;Roasto, Indrek;Liivik, Liisa;Blinov, Andrei
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.299-308
    • /
    • 2015
  • This study proposes four novel pulse width modulation (PWM) shoot-through control methods for impedance source (IS) galvanically isolated DC-DC converters. These methods are derived from a PWM control method with shifted shoot-through introduced by the authors in 2012. In contrast to the baseline solution, where the shoot-through states are generated by the simultaneous conduction of all transistors in the inverter bridge, our new approach is based on the shoot-through generation by one inverter leg. The idea is to increase the number of soft-switched transients and, therefore, decrease the dynamic losses of the front-end inverter. All the proposed approaches are experimentally verified through an insulated-gate bipolar transistor-based IS DC-DC converter. Conclusions are drawn in accordance with the results of the switching loss analysis.

ZC-ZVS PWM DC-DC Converter using One Auxiliary Switch (단일 보조 스위치를 이용한 ZC-ZVS PWM DC-DC 컨버터)

  • Park, J.M.;Park, Y.J.;Suh, K.Y.;Mun, S.P.;Kim, Y.M.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.158-161
    • /
    • 2003
  • A new soft switching technique that improves performance of the high power factor boost rectifier by reducing switching losses is introduced. The losses are reduced by air active snubber which consists of an inductor, a capacitor a rectifier, and an auxiliary switch. Since the boost switch turns off with zero current, this technique is well suited for implementations with insulated gate bipolar transistors. The reverse recovery related losses of the rectifier are also reduced by the snubber inductor which is connected in series with the boost switch and the boost rectifier. In addition, the auxiliary switch operates with zero voltage switching. A complete design procedure and extensive performance evaluation of the proposed active snubber using a 1.2[kW] high power factor boost rectifier operating from a $90[V_{rms}]$ input are also presented.

  • PDF

A New Scheme for Nearest Level Control with Average Switching Frequency Reduction for Modular Multilevel Converters

  • Park, Yong-Hee;Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.522-531
    • /
    • 2016
  • This paper proposes a new NLC (Nearest Level Control) scheme for MMCs (Modular Multilevel Converters), which offers voltage ripple reductions in the DC capacitor of the SM (Sub-Module), the output voltage harmonics, and the switching losses. The feasibility of the proposed NLC was verified through computer simulations. Based on these simulation results, a hardware prototype of a 10kVA, DC-1000V MMC was manufactured in the lab. Experiments were conducted to verify the feasibility of the proposed NLC in an actual hardware environment. The experimental results were consistent with the results obtained from the computer simulations.

DEVELOPMENT OF INTELLIGENT POWER UNIT FOR HYBRID FOUR-DOOR SEDAN

  • Aitaka, K.;Hosoda, M.;Nomura, T.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The Intelligent Power Unit (IPU) utilized in Honda's Civic Hybrid Integrated Motor Assist (IMA) system was developed with the aim of making every component lighter, more compact and more efficient than those in the former model. To reduce energy loss, inverter efficiency was increased by fine patterning of the Insulated Gate Bipolar Transistor (IGBT) chips, 12V DC-DC converter efficiency was increased by utilizing soft-switching, and the internal resistance of the IMA battery was lowered by modifying the electrodes and the current collecting structure. These improvements reduced the amount of heat generated by the unit components and made it possible to combine the previously separated Power Control Unit (PCU) and battery cooling systems into a single system. Consolidation of these two cooling circuits into one has reduced the volume of the newly developed IPU by 42% compared to the former model.

A Study on Output Characteristics of the CO2 Laser by DC-DC Converter System (DC-DC Converter System에 의한 CO2 레이저 출력 특성에 대한 연구)

  • Kim, Geun-Yong;Chung, Hyun-Ju;Min, Byoung-Dae;Kim, Yong-Cheol;Lee, Yu-Soo;Kim, Hee-Je
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1816-1819
    • /
    • 2002
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication, communications, remote sensing and military purpose etc. It is important to control the laser output power in those fields. In this paper, current resonant half-bridge inverter and Cockcraft-Walton circuit are used to vary the laser output power. This laser power supply is designed and fabricated which has less switching losses and compact size. Also we used an IGBT(Insulated Gate Bipolar Transistor) as a switching device of a power supply and PIC one-chip microprocessor are used to control the gate signal of the IGBT precisely. We investigated the output characteristics of this CO2 laser. As a result, the maximum laser output power of 26[W] is obtained at the resonant frequency of about 13[kHz].

  • PDF

A Study on Output Characteristics of the CO2 Laser with DC-DC Converter System (DC-DC Converter System에 의한 CO2 레이저 출력 특성에 관한 연구)

  • Kim, Geun-Yong;Chung, Hyun-Ju;Min, Byoung-Dae;Kim, Yong-Chul;Lee, Yu-Soo;Kim, Hee-Je
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.176-179
    • /
    • 2002
  • Nowadays, CO2 lasers are used widely in many applications such as materials fabrication. communications, remote sensing and military purpose etc. It is important to control the laser output power in those fields. In this paper, current resonant half-bridge inverter and Cockcraft-Walton circuit are used to vary the laser output power. This laser power supply is designed and fabricated which has less switching losses and compact size. Also we used an IGBT(insulated Gate Bipolar Transistor) as a switching device of a power supply and PIC one-chip microprocessor are used to control the gate signal of the IGBT precisely. We investigated the output characteristics of this CO2 laser. As a result. the maximum laser output power of 26 [W] is obtained at the resonant frequency of about 13 [kHz].

  • PDF

A Reliability Analysis in LVDC Distribution System Considering Power Quality (전력품질을 고려한 LVDC 배전계통의 신뢰도 분석)

  • Noh, Chul-Ho;Kim, Chung-Mo;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.

Sinusoidal Input Power factor Improved for Single-Phase Buck AC-DC Type Converter (정현파 입력 역률개선을 위한 단상 강압형 AC-DC 컨버터)

  • Jung, S.H.;Kwon, K.S.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.338-340
    • /
    • 2001
  • Power factor improved for single-phase buck-converter is studied in the paper. To sinusoidal waveform the input current with a near-unity power factor over a wide variety of operating conditions, the output capacitor is operated with voltage reversibility for the supply by arranging the auxiliary diode and power switching device. Then the output voltage is superposed on the input voltage during on time duration of power switching devices in order to minimize the input current distortion caused by the small input voltage when changing the polarity. The tested setup, using two insulated gate bipolar transistors(IGBT) and a microcomputer, is implemented and IGBT are switched with 20[kHz], which is out of the audible band. Moreover, a rigorous state-space analysis is introduced to predict the operation of the rectifier. The simulated results confirm that the input current can be sinusoidal waveform with a near-unity power factor and a satisfactory output voltage regulation can be achieved.

  • PDF