Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.2.299

Four Novel PWM Shoot-Through Control Methods for Impedance Source DC-DC Converters  

Vinnikov, Dmitri (Institute of Industrial Electronics and Electrical Engineering, Riga Technical University)
Roasto, Indrek (Department of Electrical Engineering, Tallinn University of Technology)
Liivik, Liisa (Department of Electrical Engineering, Tallinn University of Technology)
Blinov, Andrei (Department of Electrical Engineering, Tallinn University of Technology)
Publication Information
Journal of Power Electronics / v.15, no.2, 2015 , pp. 299-308 More about this Journal
Abstract
This study proposes four novel pulse width modulation (PWM) shoot-through control methods for impedance source (IS) galvanically isolated DC-DC converters. These methods are derived from a PWM control method with shifted shoot-through introduced by the authors in 2012. In contrast to the baseline solution, where the shoot-through states are generated by the simultaneous conduction of all transistors in the inverter bridge, our new approach is based on the shoot-through generation by one inverter leg. The idea is to increase the number of soft-switched transients and, therefore, decrease the dynamic losses of the front-end inverter. All the proposed approaches are experimentally verified through an insulated-gate bipolar transistor-based IS DC-DC converter. Conclusions are drawn in accordance with the results of the switching loss analysis.
Keywords
DC-DC power converters; Pulse width modulation converters; Pulse width modulation; Quasi-Z-source inverter; Shoot-through control methods; Switching losses; Zero current switching; Zero voltage switching;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. J. Gajanayake, L. F. Luo, G. H. Beng, S. P. Lam S. L. Kian, “Extended-boost Z-source inverters,” IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2642-2652, Oct. 2010.   DOI   ScienceOn
2 I. Roasto, D. Vinnikov, T. Jalakas, J. Zakis, and S. Ott, “Experimental study of shoot-through control methods for qZSI-based DC/DC converters,” in Proc. SPEEDAM, pp. 29-34, 2010.
3 I. Roasto and D. Vinnikov, “Analysis and evaluation of PWM and PSM shoot-through control methods for voltage-fed qZSI based DC/DC converters,” in Proc. EPE-PEMC, pp. T3-100-T3-105, 2010.
4 D. Vinnikov, I. Roasto, J. Zakis, S. Ott, and T. Jalakas, “Analysis of switching conditions of IGBTs in modified sine wave qZSIs operated with different shoot-through control methods,” Electron. Elect. Eng., Vol. 5(111), No. 5, pp. 45-50, 2011.
5 I. Roasto, D. Vinnikov, J. Zakis, and O. Husev, “New shoot-through control methods for qZSI-based DC/DC converters,” IEEE Trans. Ind. Informat., Vol. 9, No. 2, pp.640-647, May 2013.   DOI   ScienceOn
6 D. Vinnikov, I. Roasto, R. Strzelecki, and M. Adamowicz, “Step-up DC/DC converters with cascaded quasi-Z-source network,” IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3727-3736, Oct. 2012.   DOI   ScienceOn
7 A. Chub, O. Husev, and D. Vinnikov, “Input-parallel output-series connection of isolated quasi-Z-source DC-DC converters,” in Proc. PQ, pp. 277-284, 2014.
8 L. Bisenieks, D. Vinnikov, and S. Ott, “Switched inductor quasi-Z-source based back-to-back converter for variable speed wind turbines with PMSG,” Electronics and Electrical Engineering, Vol. 114, No. 8, pp. 61-66, 2011.
9 D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, “Generalised multicell switched-inductor and switched-capacitor Z-source inverters,” IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 837-848, Feb. 2013.   DOI   ScienceOn
10 Y. P. Siwakoti, F. Peng, F. Blaabjerg, P. Loh, and G. E. Town, “Impedance source networks for electric power conversion part-I: A topological review,” IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 699-716, Feb. 2015.   DOI   ScienceOn
11 H. Cha; F. Z. Peng, and D.-W. Yoo, “Z-source resonant DC-DC converter for wide input voltage and load variation,” in Proc. IPEC, pp. 995-1000, 2010.
12 J. Zakis, I. Rankis, and L. Liivik, “Loss reduction method for the isolated qZS-based DC/DC converter,” Electrical, Control and Communication Engineering, Vol. 4, pp. 13-18, 2013.   DOI
13 L. Zhu, K. Wang, F. C. Lee, and J.-S. Lai, “New start-up schemes for isolated full-bridge boost converters,” IEEE Trans. Power Electron., Vol. 18, No. 4, pp. 946-951, Jul. 2003.   DOI   ScienceOn
14 L. Liivik, D. Vinnikov, and T. Jalakas, “Synchronous rectification in quasi-Z-source converters: Possibilities and challenges,” in Proc. IEPS, pp.32-35, 2014.
15 M. Mohr and F. W. Fuchs, “Clamping for current-fed de/dc converters with recovery of clamping energy in fuel cell inverter systems,” in Proc. EPE, pp.1-10, 2007.
16 J. Zakis, D. Vinnikov, V. Kolosov, and E. Vasechko, “New active clamp circuit for current-fed galvanically isolated DC/DC converters,” in Proc. CPE, pp. 353-358, 2013.
17 R. Strzelecki, M. Adamowicz, N. Strzelecka, and W. Bury, “New type T-Source inverter,” in Proc. CPE, pp. 191-195, 2009.
18 W. Qian, F. Z. Peng, and H. Cha, “Trans-Z-source inverters,” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011.   DOI   ScienceOn
19 M. Adamowicz, J. Guzinski, D. Vinnikov, and N. Strzelecka, “Trans-Z-source-like inverter with built-in DC current blocking capacitors,” in Proc. CPE, pp. 137-143, 2011.
20 P. C. Loh, F. Gao, and F. Blaabjerg, “Embedded EZ-source inverters,” IEEE Trans. Ind. Appl., Vol. 46, No. 1, pp. 256-267, Jan./Feb. 2010.   DOI   ScienceOn
21 P. C. Loh, D. Li, and F. Blaabjerg, “Γ-Z-Source Inverters,” IEEE Trans. Power Electron., Vol. 28, No. 11, pp. 4880-4884, 2013.   DOI   ScienceOn
22 M. K. Nguyen, Y. C. Lim, and Y. G. Kim, “TZ-Source Inverters, “ IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5686-5695, Dec. 2013.   DOI   ScienceOn
23 F. Z. Peng, “Z-source networks for power conversion,” in Pros. APEC, pp. 1258-1265, 2008.
24 Y. P. Siwakoti, P. C. Loh, F. Blaabjerg, and G. E. Town, “Y-source impedance network,” IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3250-3254, Jul. 2014.   DOI   ScienceOn
25 D. Vinnikov and I. Roasto, “Quasi-Z-Source-Based Isolated DC/DC Converters for Distributed Power Generation,” IEEE Trans. Ind. Electron., Vol. 58, No. 1, pp. 192-201, Jan. 2011   DOI   ScienceOn
26 H. Xu, L. Kong, and X. Wen, “Fuel cell power system and high power DC-DC converter,” IEEE Trans. Power Electron., Vol. 19, No. 5, pp. 1250-1255, Sep. 2004.   DOI   ScienceOn
27 J. Zakis, D. Vinnikov, and I. Roasto, “Soft-switching capability analysis of a qZSI-based DC/DC converter,” in Proc. BEC, pp. 301-304, 2010.
28 D. Vinnikov, I. Roasto, and J. Zakis, “New bi-directional DC/DC converter for supercapacitor interfacing in high-power applications,” in Proc. EPE/PEMC, pp. T11-38-T11-43, 2010.
29 A. Andrijanovits, A. Blinov, O. Husev, and D. Vinnikov, “Multiport converter with integrated energy storage for hydrogen buffer interfacing with renewable energy systems,” in Proc. ICIT, pp.230-235, 2012.
30 G. Moschopoulos and J. Shah, “A Comparative study of simple AC-DC PWM full-bridge current-fed and voltage-fed converters,” Journal of Power Electronics, Vol. 4, No. 4, pp. 246-255, Oct. 2004.