• Title/Summary/Keyword: Biotic resistance

Search Result 95, Processing Time 0.023 seconds

Functional Characterization of PR-1 Protein, β-1,3-Glucanase and Chitinase Genes During Defense Response to Biotic and Abiotic Stresses in Capsicum annuum

  • Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.195-206
    • /
    • 2005
  • Spatial and temporal expression of pathogenesis-related (PR) gene and proteins has been recognized as inducible defense response in pepper plants. Gene expression and/or protein accumulation of PR-1, $\beta-1,3-glucanase$ and chitinase was predominantly found in pepper plants during the inoculations by Xanthomonas campestris pv. vesicatoria, Phytophthora capsici and Colletotrichum coccodes. PR-1 and chitinase genes were also induced in pepper plants in response to environmental stresses, such as high salinity and drought. PR-1 and chitinase gene expressions by biotic and abiotic stresses were regulated by their own promoter regions containing several stress-related cis-acting elements. Overexpression of pepper PR-1 or chitinase genes in heterogeneous transgenic plants showed enhanced disease resistance as well as environmental stress tolerances. In this review, we focused on the putative function of pepper PR-1, $\beta-1,3-glucanase$ and chitinase proteins and/or genes at the biochemical, molecular and cytological aspects.

Antibiotic Resistance of Pathogenic Escherichia coli Isolated from Piglets with Diarrhea (설사자돈 유래 대장균의 항생물질 내성에 관하여)

  • 조광현;박노찬;권헌일;김이준;박덕상
    • Korean Journal of Veterinary Service
    • /
    • v.15 no.2
    • /
    • pp.134-143
    • /
    • 1992
  • The present study was conducted to investigate the biochemical characteristics and anti-biotic resistance of Escherichia coli(E. coli) isolated from piglets with diarrhea in Kyongbuk province during the Period from February to November 1991. 368 E. coli strains were isolated from 382 piglets with diarrhea and the biochemical and cultural reaction were compared with the classification criteria of Edwards and Ewing. Tetracycline and sulfadimethoxine were found to be highly ineffective at in vitro inhibition of the E. coli of piglets origin. The majority of E. coli were susceptible to amikacin, chloramphenicol and gentamicine. 89 (89.0%) of 100 strains of E. coil were resistant to one or more drugs. The organisms resistant to 20 or 3 drugs were 54(60.6%) of 89 strains, whereas 16(17.9%) strains were found to be resistant to one drug. 55(61.8%) out of 89 drug resistance strains carried R factors($R^+$) which were transfer-able to the recipients by conjugation.

  • PDF

Antibiotic Resistance and Biochemical properties of Pathogenic Echerichia coli Isolated from Piglets with Diarrhea in Kyongbuk Western Area (경북서부지역 설사자돈에서 분리한 Haemolyic E. coli의 생화학적 특성 및 약제 내성)

  • 조종숙;이정아;오강희;박영구
    • Korean Journal of Veterinary Service
    • /
    • v.16 no.2
    • /
    • pp.150-156
    • /
    • 1993
  • The present study was conducted to investigate the biochemical characteristics and anti-biotic resistance of pathogenic Escherichia coli (E. coli) isolated from piglets with diarrhea in Kyongbuk Western Area during the period from February to November 1992. 55 E. coli strains were isolated from 97 piglets with diarrhea and the biochemical and cultural reaction were compared with the classification criteria of Edwards and Ewing. The majority of E. coli were susceptible to amikacln, enrofloxacin and gentamicin. 51 (92.7%) out of 55 drug resistance stains carried R factor (R+) which were transferable to the recipients by conjugation.

  • PDF

Rice Insects : The Role of Host Plant Resistance in Integrated Management Systems

  • Heinrichs, E.A.
    • Korean journal of applied entomology
    • /
    • v.31 no.3
    • /
    • pp.256-275
    • /
    • 1992
  • Insects are among the most important abiotic and biotic constraints to rice production. National rice research programs are in various stages in the development and implementation of integrated pest management (IPM) stratagies for rice insect control. Among the various control tactics, insect resistant cultivars are sought as the major tactic in rice IPM. Through the activities of interdisciplinary teams of scientists significant progress has been made in the development and release of insect resistant cultivars to farmers. Because of its compatibility with other control tactics insect resistance has proven to fit well into the IPM approach to rice insect control agents and minimize the need for insecticide applications. The development of biotypes which overcome the resistance in rice plants has been a significant constraint in the breeding of rice for resistance to insects. Most notable examples in Asia are the green leafhopper, Nephotettix virescens, brown planthopper, Nilaparvata lygens and the Asian rice gall midge, Orseolia oryzae. The current breeding stratege is to develop rice cultivars with durable resistance on which virulent biotypes cannot adapt. In spite of the significant progress made in the breeding of insect resistant cultivars there are still numerous important rice insect species for which host plant resistance as a control tactic has not been fully utilized. Advances in biotechnology provide promise of solving some of the problems that have limited the use of host plant resistance as a major tactic in the integrated management of rice insect pests.

  • PDF

Salicylic Acid as a Safe Plant Protector and Growth Regulator

  • Koo, Young Mo;Heo, A Yeong;Choi, Hyong Woo
    • The Plant Pathology Journal
    • /
    • v.36 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Since salicylic acid (SA) was discovered as an elicitor of tobacco plants inducing the resistance against Tobacco mosaic virus (TMV) in 1979, increasing reports suggest that SA indeed is a key plant hormone regulating plant immunity. In addition, recent studies indicate that SA can regulate many different responses, such as tolerance to abiotic stress, plant growth and development, and soil microbiome. In this review, we focused on the recent findings on SA's effects on resistance to biotic stresses in different plant-pathogen systems, tolerance to different abiotic stresses in different plants, plant growth and development, and soil microbiome. This allows us to discuss about the safe and practical use of SA as a plant defense activator and growth regulator. Crosstalk of SA with different plant hormones, such as abscisic acid, ethylene, jasmonic acid, and auxin in different stress and developmental conditions were also discussed.

Enhancement of Tomato Tolerance to Biotic and Abiotic Stresses by Variovorax sp. PMC12 (Variovorax sp. PMC12 균주에 의한 토마토의 생물학 및 비생물학적 스트레스 저항성 증진)

  • Kim, Hyeon Su;Lee, Shin Ae;Kim, Yiseul;Sang, Mee kyung;Song, Jaekyeong;Chae, Jong-Chan;Weon, Hang-Yeon
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.221-232
    • /
    • 2018
  • Rhizobacteria play important roles in plant growth and health enhancement and render them resistant to not only biotic stresses but also abiotic stresses, such as low/high temperature, drought, and salinity. This study aimed to select plant growth promoting rhizobacteria (PGPR) with the capability to mitigate biotic and abiotic stress effects on tomato plants. We isolated a novel PGPR strain, Variovorax sp. PMC12 from tomato rhizosphere. An in vitro assay indicated that strain PMC12 produced ammonia, indole-3-acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, which are well-known traits of PGPR. The aboveground fresh weight was significantly higher in tomato plants treated with strain PMC12 than in non-treated tomato plants under various abiotic stress conditions including salinity, low temperature, and drought. Furthermore, strain PMC12 also enhanced the resistance to bacterial wilt disease caused by Ralstonia solanacearum. Taken together, these results indicated that strain PMC12 is a promising biocontrol agent and a biostimulant to reduce the susceptibility of plants to both abiotic and biotic stresses.

Molecular Mechanism of Plant Immune Response (식물체의 면역반응 기작)

  • Kwon Tack-Min;Nam Jae-Sung
    • Journal of Plant Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.73-83
    • /
    • 2005
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products and sequential signal transduction pathways activating defense responses are rapidly triggered. As a results, not only exhibit a resistance against invading pathogens but also plants maintain the systemic acquired resistance (SAR) to various other pathogens. This molecular interaction between pathogen and plant is commonly compared to innate immune system of animal. Recent studies arising from molecular characterization of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on molecular mechanism of gene-for-gene interaction. Furthermore, new technologies of genomics and proteomics make it possible to monitor the genome-wide gene regulation and protein modification during activation of disease resistance, expanding our ability to understand the plant immune response and develop new crops resistant to biotic stress.

HOW TO DEVELOPE NEW PRO BIOTIC WITH ANTI Helicohacter pylori FUNCTION

  • Lee Yeonhee
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.161-169
    • /
    • 2001
  • Lactic acid producing bacteria were isolated from baby feces and characterized to be used as a probiotic with anti Helicobacter pylori functions. The selected bacteria had inhibition activity on the adherance and growth of H. pylori. These bacteria had additional beneficial characteristics for the probiotic such as antibacterial activity, antitumor activity, immunostimulation activity, resistance to antibiotic and bile salt, ability to bind to the intestinal cells, and safe for the human use.

  • PDF

Systemic Resistance and Expression of the Pathogenesis-Related Genes Mediated by the Plant Growth-Promoting Rhizobacterium Bacillus amyloliquefaciens EXTN-1 Against Anthracnose Disease in Cucumber

  • Park, Kyung-Seok;Ahn, Il-Pyung;Kim, Choong-Hoe
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. To obtain plant growth-promoting rhizobacteria inducing resistance against cucumber anthracnose by Colletotrichum orbiculare, more than 800 strains of rhizobacteria were screened in the greenhouse. Among these strains, Bacillus amyloliquefaciens solate EXTN-1 showed significant disease control efficacy on the plants. Induction of pathogenesis-related(PR-la) gene expression by EXTN-1 was assessed using tobacco plants transformed with PR-1a::$\beta$-glucuronidase(GUS) construct. GUS activities of tobacco treated with EXTN-1 and salicylic acid-treated transgenic tobacco were significantly higher than those of tobacco plants with other treatments. Gene expression analyses indicated that EXTN-1 induces the accumulation of defense-related genes of tobacco. The results showed that some defense genes are expressed by the treatment with EXTN-1 suggesting the similar resistance mechanism by salicylic acid.

  • PDF

Similarities of Tobacco Mosaic Virus-Induced Hypersensitive Cell Death and Copper-Induced Abiotic Cell Death in Tobacco

  • Oh, Sang-Keun;Cheong, Jong-Joo;Ingyu Hwang;Park, Doil
    • The Plant Pathology Journal
    • /
    • v.15 no.1
    • /
    • pp.8-13
    • /
    • 1999
  • Hypersensitive cell death of plants during incompatible plant-pathogen interactions is one of the efficient defense mechanisms of plants against pathogen infections. For better understanding of the molecular mechanisms involved in the plant hypersensitive response (HR), TMV-induced biotic plant cell death and CuSO4-induced abiotic plant cell death were compared in terms of expression patterns of ten different defense-related genes as molecular markers. The genes include five pathogenesis-related protein genes, two plant secondary metabolite-associated genes, two oxidative stress-related genes and one wound-inducible gene isolated from tobacco. Northern blot analyses revealed that a same set of defense-related genes was induced during both biotic and abiotic cell death but with different time and magnitude. The expression of defense-related genes in tobacco plants was temporarily coincided with the time of cell death. However, when suspension cell cultures was used to monitor the expression of defense-related genes, different patterns of the gene expression were detected. This result implies that three are common and, in addition, also different branches of signaling pathways leading to the induced expression of defense-related genes in tobacco during the pathogen- and heavy metal-induced cell death.

  • PDF