• Title/Summary/Keyword: Biotechnology industry

Search Result 1,898, Processing Time 0.032 seconds

Plant biotech research and development for agribusiness in Jeju

  • Song, Pill-Soon
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2005.11a
    • /
    • pp.84-87
    • /
    • 2005
  • The citrus industry represents a major sector of agribusiness in Jeju successfully nurtured by the local governmental farm bureaus for the past three decades. However, in the face of increasing imports effected under the international free trade agreement, the continuous economic viability of the island’s citrus industry is no longer assured. Thus, it entails exploration and development of new agribusiness potentials that are supplemental and/or alternative to the citrus industry. In this presentation, I will discuss two projects of such potentials. (i) Under the tripartite collaboration among Kumho Life and Environmental Science Laboratory, Cheju National University and South Jeju County, genetically engineered turfgrass cultivars possessing both herbicide- and shade-tolerances (gene pyramiding) are currently at final phase of phenotype evaluations and environmental safety assessments. (ii) Fig fruits with longer shelf-life are being developed with support from Jeju HiTech Industrial Development Institute (HiDI) and at its initial phase of development.

  • PDF

Reform Measures of Distribution Structure to Promote Domestic Milk Consumption (국산 시유의 소비 증진을 위한 유통 구조 개선 방향)

  • Chung, Woon-Hyun
    • Journal of Dairy Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.32-38
    • /
    • 1999
  • Korean dairy industry is placed on the very critical situation with the progress of free trade marketing system internationally. To keep and improve the dairy food market, better measures are imperative for dairy industry. Especially, the milk distribution system is premodern to some extent, in comparison with both the production and the processing part of dairy industry. Reform measures for the promotion of domestic milk consumption by lowering the distribution cost are as follows. First, out-sourcing of the logistics department can decrease the circulation cost of milk. Secondly, milk should be packed into large-size package(more than 1 liter) to save both package and distribution cost. Thirdly, milk should be distributed from plant to consumers through the hygienic distribution system including perfect cold chain system, Above reform measures can not come true through the efforts taken by one company but through co-worker, concerted research, and joint in-vestment among dairy companies that can reduce the distribution cost and provide consumers with the best service, eventually resulting in the increment of milk consumption.

  • PDF

Isolation of Alcohol-tolerant Amylolytic Saccharomyces cerevisiae and Its Application to Alcohol Fermentation

  • Jung, He-Kyoung;Park, Chi-Duck;Bae, Dong-Ho;Hong, Joo-Heon
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1160-1164
    • /
    • 2008
  • An novel amylolytic yeast, Saccharomyces cerevisiae HA 27, isolated from nuruk, displayed resistance against high sugar (50% glucose) and alcohol (15%). Maximal production of amylolytic enzyme by S. cerevisiae HA 27 was achieved on 9 days of cultivation at the optimal temperature $20^{\circ}C$ and pH 6.0. The activity of amylolytic enzyme produced by S. cerevisiae HA 27 was stable, even at $70^{\circ}C$, and over a broad pH range (4.0-11.0). Also, the amylolytic enzyme of S. cerevisiae HA 27 showed optimal activity in pH 5.0 at $50^{\circ}C$. S. cerevisiae HA 27 exhibited 6.2%(v/v) alcohol fermentation ability using starch as a carbon source.

Heat Treatments Used in the Dairy Industry (유제품에 이용되는 주요 열처리 조건)

  • Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.230-236
    • /
    • 2020
  • Heat treatment is a fundamental processing technology in the dairy industry. The main purpose of heat treatment is to destroy pathogenic and spoilage promoting microorganisms to ensure milk safety and shelf life. Despite the development of alternative technologies, such as high-pressure processing and pulse field technology for microbial destruction, heat treatment is widely used in the dairy industry and in other food processes to destroy microorganisms. Heat treatment has contributed greatly to the success of food preservation since Pasteur's early discovery that heat treatment of wine and beer could prevent their deterioration, and since the introduction of milk pasteurization in the 1890s. In Korea, food labeling standards do not stratify heat treatments into low temperature, high temperature, and ultra-high temperature methods. Most milk is produced in Korea by pasteurization, with extended shelf life (ESL : 125--140℃ / 1-10 s). Classification based on temperature (i.e. low, high, and ultra-high), is meaningless.

Characterization of Novel Amylase-Sensitive, Anti-Listerial Class IId Bacteriocin, Agilicin C7 Produced by Ligilactobacillus agilis C7

  • Jeong Min Yoo;Ji Hoon Song;Robie Vasquez;In-Chan Hwang;Jae Seung Lee;Dae-Kyung Kang
    • Food Science of Animal Resources
    • /
    • v.43 no.4
    • /
    • pp.625-638
    • /
    • 2023
  • Among various biological agents, bacteriocins are important candidates to control Listeria monocytogenes which is a foodborne pathogen. In this study, a novel bacteriocin, named agilicin C7, was isolated from Ligilactobacillus agilis C7 showing inhibitory activity against L. monocytogenes. Agilicin C7 biosynthesis gene was characterized by bioinformatics analyses and heterologously expressed in Escherichia coli for further study. The anti-listeria activity of recombinant agilicin C7 (r-agilicin C7) was lost by proteases and α-amylase, suggesting that agilicin C7 is a glycoprotein. r-Agilicin C7 has wide pH and thermal stability and is also stable in various organic solvents. It destroyed L. monocytogenes by damaging the integrity of the cell envelope. These properties of r-agilicin C7 indicate that agilicin C7 is a novel amylase-sensitive anti-listerial Class IId bacteriocin. Physicochemical stability and inhibitory activity against L. monocytogenes of r-agilicin C7 suggest that it can be applied to control L. monocytogenes in the food industry, including dairy and meat products.

Senior Thai Fecal Microbiota Comparison Between Vegetarians and Non-Vegetarians Using PCR-DGGE and Real-Time PCR

  • Ruengsomwong, Supatjaree;Korenori, Yuki;Sakamoto, Naoshige;Wannissorn, Bhusita;Nakayama, Jiro;Nitisinprasert, Sunee
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.8
    • /
    • pp.1026-1033
    • /
    • 2014
  • The fecal microbiotas were investigated in 13 healthy Thai subjects using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Among the 186 DNA bands detected on the polyacrylamide gel, 37 bands were identified as representing 11 species: Bacteroides thetaiotaomicron, Bacteroides ovatus, Bacteroides uniformis, Bacteroides vulgatus, Clostridium colicanis, Eubacterium eligenes, E. rectale, Faecalibacterium prausnitzii, Megamonas funiformis, Prevotella copri, and Roseburia intestinalis, belonging mainly to the groups of Bacteroides, Prevotella, Clostridium, and F. prausnitzii. A dendrogram of the PCR-DGGE divided the subjects; vegetarians and non-vegetarians. The fecal microbiotas were also analyzed using a quantitative real-time PCR focused on Bacteroides, Bifidobacterium, Enterobacteriaceae, Clostrium coccoides-Eubacterium rectale, C. leptum, Lactobacillus, and Prevotella. The nonvegetarian and vegetarian subjects were found to have significant differences in the high abundance of the Bacteroides and Prevotella genera, respectively. No significant differences were found in the counts of Bifidabacterium, Enterobacteriaceae, C. coccoides-E. rectale group, C. leptum group, and Lactobacillus. Therefore, these findings on the microbiota of healthy Thais consuming different diets could provide helpful data for predicting the health of South East Asians with similar diets.

Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken

  • Min-Jin Kwak;Dong-Jin Ha;Min Young Park;Ju Young Eor;Kwang-Youn Whang;Younghoon Kim
    • Journal of Animal Science and Technology
    • /
    • v.66 no.2
    • /
    • pp.398-411
    • /
    • 2024
  • Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.

Inhibition of inflammatory responses in lipopolysaccharide-induced RAW 264.7 cells by Pinus densiflora root extract

  • Lee, Jae-Eun;Lee, Eun-Ho;Park, Hye-Jin;Kim, Ye-Jin;Jung, Hee-Young;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.275-281
    • /
    • 2018
  • Pinus densiflora root (PDR) is used as a medicinal plant. In this study, we investigated whether the PDR extract has anti-inflammatory activities. Cell viability assays showed that the extract was not toxic toward RAW 264.7 cells at concentrations up to $10{\mu}g/mL$. At $10{\mu}g/mL$, the extract decreased nitric oxide (NO) content to 40% of the control level. The protein expression of inducible nitric oxide synthase (iNOS), which generates NO, decreased with increasing concentrations of the extract. Prostaglandin $E_2$ ($PGE_2$) levels were significantly inhibited by over 50% in the presence of $10{\mu}g/mL$ of the extract. The protein expression of cyclooxygenase-2 (COX-2), which generates $PGE_2$, decreased with increasing concentrations of the extract. Proinflammatory cytokines, such as tumor necrosis factor-alpha ($TNF-{\alpha}$), interleukin-6 (IL-6), and $IL-1{\beta}$, were detected in RAW 264.7 cells after lipopolysaccharide (LPS) treatment. The extract did not affect the levels of $TNF-{\alpha}$ and IL-6, but it significantly inhibited the level of $IL-1{\beta}$. It also completely inhibited the transcription of nuclear factor-kappaB ($NF-{\kappa}B$). These results indicate that the PDR extract reduces inflammatory response-related proteins, such as NO, $PGE_2$, iNOS, and COX-2, in LPS-induced RAW 264.7 cells via the regulation of $NF-{\kappa}B$. Consequently, we have provided a mechanism to explain the anti-inflammatory effect of the PDR extract; that is, it exerts such an effect by regulating $NF-{\kappa}B$. The PDR extract can therefore be considered as an effective anti-inflammatory agent.

Anti-inflammatory Effect of Myricetin from Rhododendron mucronulatum Turcz. Flowers in Lipopolysaccharide-stimulated Raw 264.7 Cells (Lipopolysaccharide로 유도된 Raw264.7 cell에서 Rhododendron mucronulatum Turcz. Flower으로부터 분리한 myricetin에 의한 염증 억제효과)

  • Choi, Moo-Young;Hong, Shin-Hyup;Cho, Jun-Hyo;Park, Hye-Jin;Jo, Jae-Bum;Lee, Jae-Eun;Kim, Dong-Hee;Kim, Byung-Oh;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1245-1252
    • /
    • 2016
  • As a research of inflammation inhibitory activity using natural resource, the inflammation inhibitory activity by purified active compound from Rhododendron mucronulatum flower was experimented. Rhododendron mucronulatum flower components were purified and separated with Sephadex LH-20 and MCI gel CHP-20 column chromatography, Purified compound was confirmed as myricetin by $^1H-NMR$, $^{13}C-NMR$ and Fast atom bombardment (FAB)-Mass spectrum to have inhibition activity on inflammatory factors secreted by Raw 264.7 cells in response to lipopolysaccharide stimulation. Myricetin inhibited nitric oxide (NO) expression in a concentration dependent manner, approximately 40% inhibition was observed at a concentration of $50{\mu}M$. The inhibition effect of myricetin on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression was 20% and 80%, respectively, at a concentration of $25{\mu}M$. Myricetin also inhibited expression of the inflammatory cytokines, tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and prostaglandin $E_2(PGE_2)$ in a concentration dependent manner; a concentration of $50{\mu}M$, 70%, 80%, 80% and 95% inhibition was observed, respectively. Therefore myricetin isolated from Rhododendron mucronulatum flowers is expected to have an anti-inflammatory effect in Raw 264.7 cell induced by lipopolysaccharides. The results can be expected myricetin from Rhododendron mucronulatum flower to use as functional resource for anti-inflammatory activity.

Preparation of Base Paper for Mulching Mat Sheet Using Biodegradable Polymer (생분해성 고분자를 이용한 조림묘목용 멀칭매트 원지 제조)

  • Lee, Geum-Ja;Park, Ji-Hyun;Kang, Kwang-Ho;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • Mulching technique is used to control the temperature and moisture content of soil by covering the ground surface. Most kinds of mulching film are made of polyethylene which is non-biodegradable synthetic polymer. Utilizing these films has been one of the main sources in soil pollution. Thus residual films under the ground should be removed after a certain period of time. Therefore, an alternative mulching material made of biodegradable functional paper is considered instead of non-biodegradable films. The mulching sheet produced from paper basis has a functionality to be naturally degraded and then recycled to the bio-materials on soil. In this study, the paper based-mulching sheet coated with biodegradable polymer was specially produced using a laboratory bar coater. Coating colors prepared by dissolving PBS/PLA in chloroform were applied to kraft paper. The mechanical strength and aging properties of this mulching sheet were investigated. The burst strength of polymer-coated paper was decreased with the increase of the PBS ratio in PBS/PLA blends, and, in particular, 30/70 blending condition led to good stability in heat-aging atmosphere for 60 days.