Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.11.1245

Anti-inflammatory Effect of Myricetin from Rhododendron mucronulatum Turcz. Flowers in Lipopolysaccharide-stimulated Raw 264.7 Cells  

Choi, Moo-Young (Department of Food and Nutrition, College of Health Science, Sangji University)
Hong, Shin-Hyup (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Cho, Jun-Hyo (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Park, Hye-Jin (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Jo, Jae-Bum (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Lee, Jae-Eun (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Kim, Dong-Hee (Korea Promotion Institute for Traditional Medicine Industry)
Kim, Byung-Oh (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Cho, Young-Je (School of Food Science and Biotechnology/Food Bio-Industry Institute, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.11, 2016 , pp. 1245-1252 More about this Journal
Abstract
As a research of inflammation inhibitory activity using natural resource, the inflammation inhibitory activity by purified active compound from Rhododendron mucronulatum flower was experimented. Rhododendron mucronulatum flower components were purified and separated with Sephadex LH-20 and MCI gel CHP-20 column chromatography, Purified compound was confirmed as myricetin by $^1H-NMR$, $^{13}C-NMR$ and Fast atom bombardment (FAB)-Mass spectrum to have inhibition activity on inflammatory factors secreted by Raw 264.7 cells in response to lipopolysaccharide stimulation. Myricetin inhibited nitric oxide (NO) expression in a concentration dependent manner, approximately 40% inhibition was observed at a concentration of $50{\mu}M$. The inhibition effect of myricetin on inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 protein expression was 20% and 80%, respectively, at a concentration of $25{\mu}M$. Myricetin also inhibited expression of the inflammatory cytokines, tumor necrosis factor $(TNF)-{\alpha}$, interleukin $(IL)-1{\beta}$, IL-6 and prostaglandin $E_2(PGE_2)$ in a concentration dependent manner; a concentration of $50{\mu}M$, 70%, 80%, 80% and 95% inhibition was observed, respectively. Therefore myricetin isolated from Rhododendron mucronulatum flowers is expected to have an anti-inflammatory effect in Raw 264.7 cell induced by lipopolysaccharides. The results can be expected myricetin from Rhododendron mucronulatum flower to use as functional resource for anti-inflammatory activity.
Keywords
Anti-inflammation; lipopolysaccharide; myricetin; purification; Rhododendron mucronulatum flowers;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Oshima, H. and Bartsch, H. 1994. Chronic infections and inflammatory processes as cancer risk factors: possible role of nitric oxide in carcinogenesis. Mutat. Res. 305, 253-264.   DOI
2 Park, J. C., Hur, J. M. and Park, J. G. 2002. Biological activities of Umbelliferae family plants and their bioactive flavonoids. Food Ind. Nutr. 7, 30-34.
3 Reissig, J. L., Storminger, J. L. and Leloir, L. F. 1995. A modified colorimetric method for the estimation of N-acetyl amino sugars. J. Biol. Chem. 217, 959-966.
4 So, M. S., Lee, J. S. and Yi, S. Y. 2004. Inhibition of nitric oxide and cytokines in macrophages by Codonopsis lanceolata. Kor. J. Food Sci. Technol. 36, 986-990.
5 Stuehr, D. J., Cho, H. J., Kwon, N. S., Weise, M. F. and Nathan, C. F. 1991. Purification and characterization of the cytokine-induced macrophage nitric oxide synthase: an FAD- and FMN-containing flavoprotein. Proc. Natl. Acad. Sci. USA 88, 7773-7777.   DOI
6 Stuehr, D. J. 1999. Mammalian nitric oxide synthase. Biochem. Biophys. Acta. 1411, 217-230.
7 Suh, Y. J. 2002. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40, 1091-1097.   DOI
8 Syu-ichi, K., Ai, S., Ayako, T., Takako, H., Yu, O., Mayuko, U., Yutaro, O., Norimichi, N. and Masaaki, I. 2005. Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in Raw 264.7 macrophages. Life Sci. 25, 1-9.
9 Weisz, A., Cicatiello, L. and Esumi, H. 1996. Regulation of the mouse inducible-type nitric oxide synthase gene promoter by interferon-gamma, bacterial lipopolysaccharide and NG-monomethyl-L-arginine. Biochem. J. 316, 209-215.   DOI
10 Chung, T. Y., Kim, M. A. and Daniel, J. 1996. Antioxidative activity of flavonoids isolated from Jindalae flowers (Rhododendron mucronulatum Turcz.). Agric. Chem. Biotechnol. 39, 320-326.
11 Chung, T. Y. and Lee, S. E. 1991. Volatile flavor components of Jindalae flower (Korean azalea flower, Rhododendron mucronulatum Turczaninow). J. Kor. Agric. Chem. Soc. 34, 344-352.
12 Huang, M. T., Ho, C. T. and Lee, C. Y. 1992. Phenolic compounds in food. In phenolc compounds in food and their effects on health II. Maple Press, New York. 99, 2-7.
13 Dural, B. and Shetty, K. 2001. The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed Anise root extract. J. Food Biochem. 25, 361-377.   DOI
14 Gross, S. S. and Wolin, M. S. 1995. Nitric oxide : pathophysiological mechanisms. Annu. Rev. Physiol. 57, 737-769.   DOI
15 Ham, S. S., Hong, J. K. and Lee, J. H. 1997. Antimutagenic effects of juices from edible Korean wild herbs. J. Food Sci. Nutr. 2, 155-161.
16 Iwona, M., Barbara, M., Violetta, R. S., Romuald, M., Zbigniew, S., Maciej, K. and Stefania, G. K. 2006. Proinflammatory cytokine (IL-$1{\beta}$, IL-6, IL-12, IL-18 and TNF-${\alpha}$) levels in sera of patients with subacute cutaneous lupus erythematosus. Immunol. Lett. 102, 79-82.   DOI
17 An, B. J., Lee, C. E., Son, J. H., Lee, J. Y., Choi, G. H. and Park, T. S. 2005. Antioxidant, anticancer and tyrosinase inhibition activities of extracts from Rhododendron mucronulatum T. J. Kor. Soc. Appl. Biol. Chem. 48, 280-284.
18 An, B. J., Lee, J. T., Lee, C. E., Son, J. H., Lee, J. Y and Park, T. S. 2005. A study on the development cosmeceutical ingredient, Rhododendron mucronulatum, and the application of rheology properties. J. Kor. Soc. Appl. Biol. Chem. 48, 273-279.
19 Yang, J., Meyers, K. J., Heide, J. and Lui, R. H. 2004. Varietal differences in phenolic content and antioxidant and antiproliferative activities of onions. J. Agric. Food Chem. 52, 6787-6793.   DOI
20 Willeaume, V., Kruys, V., Mijatovic, T. and Huez, G. 1995. Tumor necrosis factor-alpha production induced by viruses and by lipopolysaccharides in macrophages: similarities and differences. J. Inflamm. 46, 1-12.
21 Yun, C. H., Shin, J. S., Park, H. J., Park, J. H. and Lee, K. T. 2010. Inhibition of LPS-induced iNOS, COX-2 expression and cytokines production by fupenjic acid in macrophage cells. Kor. J. Pharmacogn. 41, 14-20.
22 Kroncke, K. D., Fehsel, K. and Kolb-Bachofen, V. 1998. Inducible nitric oxide synthase in human diseases. Clin. Exp. Immunol. 113, 147-156.   DOI
23 Cho, Y. J. and An, B. J. 2008. Anti-inflammatory effect of extracts from Cheongmoknosang (Morus alba L.) in lipopolysaccharide- stimulated Raw cells. J. Kor. Soc. Appl. Biol. Chem. 51, 44-48.
24 Chung, T. Y., Kim, M. A. and Daniel, J. 1996. Antioxidative activity of phenolic acids isolated from Jindalae flowers (Rhododendron mucronulatum Turczaninow). Agric. Chem. Biotechnol. 39, 506-511.
25 Anfernee, K. T., Chi-Keung, W., Xiao-Ling, S., Mengsu, Y. and Wang-Fun, F. 2005. Honokiol inhibits TNF-${\alpha}$-stimulated NF-${\kappa}$B activation and NF-${\kappa}$B-regulated gene expression through suppression of IKK activation. Biochem. Pharm. 70, 1443-1457.   DOI
26 Azuma, K., Nakayama, M., Koshika, M., Ippoushi, K., Yamaguchi, Y., Kohata, K., Yamauchi, Y., Ito, H. and Higashio, H. 1999. Phenolic antioxidants from the leaves of Corchorus olitorius L. J. Agric. Food Chem. 47, 3963-3966.   DOI
27 Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. and Mitchell, J. B. 1987. Evaluation of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47, 936-942.
28 Jang, I. M. 2003. Treaties on asian herbal medicines. Institute of natural science, Seoul University, Seoul, Korea, p. 2052.
29 Kim, S. C., Jung, Y. S., Lee, J. R., Kim, Y. W., Byun, B. H., Kwon, T. K., Suh, S. I., Byun, S. H and Kwon, Y. K. 2004. Inhibition effect of Phellinus lgniarius water extract on TNF- ${\alpha}$, IL-$1{\beta}$, IL-6 and nitric oxide production in lipopolysaccharide-activated Raw 264.7 cells. Kor. J. Ori. Phy. Pathol. 18, 880-886.
30 Lee, O. H., Lee, H. B. and Son, J. Y. 2004. Antimicrobial activities and nitrite-scavenging ability of olive leaf fractions. Kor. J. Soc. Food Cookery Sci. 20, 204-210.
31 McCartney-Francis, N., Allen, J. B., Mizel, D. E., Albina, J. E., Xie, Q. W., Nathan, C. F. and Wahl, S. M. 1993. Suppression of arthritis by an inhibitor of nitric oxide synthase. J. Exp. Med. 178, 749-754.   DOI
32 Moon, T. C., Park, J. O., Chung, K. W., Son, K. H., Kim, H. P., Kang, S. S. and Chang, H. W. 1999. Anti-inflammatory activity of the flavonoid components of Lonicera japonica. Yakhak Hoeji 43, 117-123.
33 Naoko, K., Satsuki, K. and Shinichi, W. 2005. IL-17 suppresses TNF-${\alpha}$-induced CCL27 production through induction of COX-2 in human keratinocytes. J. Allergy Clin. Immun. 116, 1144-1150.   DOI
34 Nirupama, S., Anil, K. S., Battu, A., Sangita, M., Sudip, G. and Nasreen, Z. E. 2005. Human resistin stimulates the pro-inflammatory cytokines TNF-${\alpha}$ and IL-12 in macrophages by NF-${\kappa}$B-dependent pathway. Biochem. Biophy. Res. Comm. 334, 1092-1101.   DOI