• Title/Summary/Keyword: Biot

Search Result 196, Processing Time 0.022 seconds

Wave Reflection from Porous Ocean Sediment With Depth Dependent Properties (깊이 방향의 변화가 있는 해저 퇴적물에서 반사 특성)

  • Lee, Keun-Hwa;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1E
    • /
    • pp.1-7
    • /
    • 2006
  • This study examines the reflection characteristic of a thin transition layer of the ocean bottom showing variability with respect to depth. In order to model the surficial sediment simply, we reduce the Biot model to the depth dependent wave equation for the pseudo fluid using the fluid approximation (weak frame approximation). From the reduced equation, the difference between the inherent frequency dependency of the reflection and the frequency dependency resulting from a thin transition layer is investigated. Using Tang's depth porosity profile model of the surficial sediment [D. Tang et al., IEEE J. Oceanic Eng., vol.27(3), 546-560(2002)], we numerically simulated the reflection loss and investigated the contribution from both frequency dependencies. In addition, the effects of different sediment type and varying depth structure of the sediment are discussed.

Optimization of Geometrically, Thermally Asymmetric Trapezoidal Fins with a View of Effectiveness (유용성의 측면에서 기하학적, 열적 비대칭 사다리꼴 휜의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.579-588
    • /
    • 2003
  • Optimum fin effectiveness of geometrically and thermally asymmetric trapezoidal fins is represented as a function of the ratio of the fin bottom to top Biot numbers, the ratio of the fin tip to top Biot numbers and fin shape factor. Optimum fin effectiveness is taken as 98% of the maximum fin effectiveness by comparing the increasing rate of fin effectiveness with that of dimensionless fin length. For this analysis, two dimensional separation of variables method is used. Also, the value of the slope of upper surface of the fin and fin efficiency corresponding to optimum effectiveness are presented.

Errors in One-Dimensional Heat Transfer Analysis in a Hollow Cylinder Feedwater Pipe (속이 빈 원관에서 1차원적인 열전달 해석의 오차)

  • Gang, Hyeong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.2
    • /
    • pp.689-696
    • /
    • 1996
  • A comparison is made of the heat loss from a hollow cylinder, computed using an one-dimensional analytic method and a two-dimensional separation of variables scheme. For a two-dimensional analysis, the temperature of the inner surface as a boundary condition can be varied along the length of the cylinder by varing the temperature variation factor, b. Comparisons of the heat loss from the hollow cylinder using these two methods are given as a function of non-dimensional cylinder length, the ratio of the outer radius to the inner radius, temperature variation factor and Biot number. The result shows that the value of the heat loss from the hollow cylinder obtained using the one-dimensional analytic method becomes close to the value given by the two-dimensional separation of variables scheme as the value of Biot number and the non-dimensional hollow cylinder length increase and as the ratio of the outer radius to the inner radius decreases.

Comparison of Biot-Savart's Law and 3D FEM in the Study of Electromagnetic Forces Acting on End Winding

  • Kim, Ki-Chan
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.369-374
    • /
    • 2011
  • An induction motor operated with high voltage source generally generates high current in starting mode and has a long transient time after being started. This large and sustaining starting current causes the end windings of the stator to have excessive electromagnetic force. This force is the source of vibration and has a negative and serious influence on the insulation of end windings. Therefore, designing the end winding part with an appropriate support system is needed. To design the support ring enclosing the end windings, we analyze the distribution of electromagnetic force on the end windings by applying the Biot-Savart's law and the 3D finite element method (FEM), and comparing two simulation methods. Finally, we verify the safety of the support structure of the end winding part using stress analysis, which is analyzed with the electromagnetic forces from the 3D FEM simulation.

Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification (유한요소법에 의한 흡음재 음향특성 연구 및 검증)

  • 정환익;김관주;박진규;김상헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.874-878
    • /
    • 2003
  • Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYSNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

  • PDF

New Experimental Investigation of Magnetic and Electric Fields in the Vicinity of High-Voltage Power Lines

  • Ghnimi, Said;Rajhi, Adnen;Gharsallah, Ali
    • Journal of Magnetics
    • /
    • v.21 no.1
    • /
    • pp.102-109
    • /
    • 2016
  • In this paper, the theoretical and experimental characteristics of magnetic and electric fields in the vicinity of high voltage lines are investigated. To realize these measurements and calculations, we have developed some equations for two overhead power line configurations of 150 kV (single circuit, double circuit), based on Biot-savart law, image and Maxwell theories, in order to calculate the magnetic and electric fields. The measurements were done to a maximum distance from the tower of 50 m, at a height of 1m from the ground. These experiments take into consideration the real situations of the power lines and associated equipment. The experimental results obtained are near to that of the Biot-Savart theoretical results for a far distance from the tower; and for a distance close to the power line, the results from the image theory are in good agreement with the experimental results.

2-Dimensional Performance Analysis of a Plate Fin (평판-핀의 2차원 성능 해석)

  • Kim, Yun-Ha;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.21-26
    • /
    • 2000
  • Heat loss, fin effectiveness and efficiency of a plate fin are investigated as a function of non-dimensional fin length and Biot number using a two-dimensional separation of variables method. The value of temperature of the left side is set to be different from that of the right side for this plate fin to satisfy the real physical condition. Also temperature distribution within this plate fin is listed. One of the results shows that the fin can be considered to be useful in view of fin effectiveness on the given range of Biot number when non-dimensional fin length is larger than 3.

  • PDF

3-Dimensional Magnetic Field Analysis of Coil Using Biot-Savart Law Considering Singularity (특이점이 고려된 비오-사바르법을 이용한 3차원 코일의 자계 해석)

  • Song, Ho-Jun;Lee, Hyang-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.104-106
    • /
    • 2005
  • In this paper, 3-dimensional magnetic field of coil is analyzed by using biot-sarvart law considering singularity. The RMSP(reduced magnetic scalar potential) arc employed in order to reduce the number of unknown variables in FEM(Finte Element Analysis) or BEM(Boundary Element Method). It Is necessary to calculate magnetic field of souce current when RMSP is used. Biot-savart law is generally used. it is difficult to calculate the field when the source point is in inside the coil. To integrate using gaussian quadrature, the cross section of coil is divided considering the position of field point when field point is inside coil. The proposed method shows good agreement of magnetic field compared with FEMLAB, OPERA3D.

  • PDF

Numerical Analysis of the Non-Isothermal Heat Transfer in Solids Conveying Zone of a Single Screw Extruder (단축압출기 고체수송부에서의 비등온 열전달 현상에 관한 수치 해석)

  • Ahn Young-Cheol
    • Polymer(Korea)
    • /
    • v.29 no.6
    • /
    • pp.549-556
    • /
    • 2005
  • Effects of the dimensionless variables on the heat transport phenomena in the extrusion process of a single screw extruder have been studied numerically. Based on the understanding of the solids conveying related to the geometrical structure and characteristics of the screw, the heat balance equation for the solids conveying zone was established and normalized. The finite volume method and power-law scheme were applied to derive a discretized equation and the equation was solved using the alternating direction iterative method with relaxation. Effects of the dimensionless parameters, Biot and Peclet numbers, that define the heat transfer characteristics of the solids conveying zone have been investigated with respect to the temperature of the feeding zone and the length of the solids conveying zone. As the Biot number is increased, the heat loss by cooling dominates to decrease the temperature of the barrel but it has little effects on the temperature of the solids bed and the length of the solids conveying zone. On the other hand, if the Peclet number is increased, the convection term dominates to decrease the temperature of the solids bed and it results in an increase in the length of the solids conveying zone.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF