• Title/Summary/Keyword: Biosphere

Search Result 229, Processing Time 0.034 seconds

Morphological, molecular, and chromosomal identification of dwarf haploid parthenosporophytes of Tauya basicrassa (Phaeophyceae, Laminariales) from the Sea of Okhotsk

  • Klochkova, Tatyana A.;Klochkova, Nina G.;Yotsukura, Norishige;Kim, Gwang Hoon
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.15-28
    • /
    • 2017
  • Morphological, molecular and chromosomal studies were carried out on Tauya basicrassa, an endemic kelp species distributed on the northern continental coast of the Sea of Okhotsk in Russia. The sporophytes of T. basicrassa grow up to 3-6 m long, 1.8-2.2 m wide, and 6.5-7 kg wet weight. The thallus has a blade with very thick narrow basal portion and thinner and much broader upper portion, which usually splits into 3 bullated lobes. A dwarf laminariacean alga, which did not show any morphological similarity to the other species of the order Laminariales, was found from the same locality. The blade of this alga is thin and soft, reached 26-34 cm long and 6-6.5 cm wide and had 4 longitudinal rows of bullations that covered the entire blade. Molecular analysis showed that the dwarf alga has 100% sequence identity in plastid-encoded RuBisCo spacer, mitochondrial cytochrome c oxidase subunit 1 and nuclear-encoded rDNA genes with normal sporophytes of T. basicrassa, indicating that they are different life forms of the same species. Fluorescent DAPI staining showed that the nucleus in the normal sporophyte was 50-65% larger than those of the dwarf ones. Chromosome count using acetocarmine staining showed n = ca. 20 for the normal sporophytes of T. basicrassa and n = ca. 10 for the dwarf one. These results suggest that the dwarf thallus is a haploid parthenosporophyte of T. basicrassa, which developed in nature. This is the first evidence of parthenosporophytes of the laminariacean algae occurring naturally in the field.

Sensitivity Analysis of Near Surface Air Temperature to Land Cover Change and Urban Parameterization Scheme Using Unified Model (통합모델을 이용한 토지피복변화와 도시 모수화 방안에 따른 지상 기온 모의성능 민감도 분석)

  • Hong, Seon-Ok;Byon, Jae-Young;Park, HyangSuk;Lee, Young-Gon;Kim, Baek-Jo;Ha, Jong-Chul
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.427-441
    • /
    • 2018
  • This study examines the impact of the urban parameterization scheme and the land cover change on simulated near surface temperature using Unified Model (UM) over the Seoul metropolitan area. We perform four simulations by varying the land cover and the urban parameterization scheme, and then compare the model results with 46 AWS observation data from 2 to 9 August 2016. Four simulations were performed with different combination of two urban parameterization schemes and two land cover data. Two schemes are Best scheme and MORUSES (Met Office Reading Urban Surface Exchange Scheme) and two land cover data are IGBP (International Geosphere and Biosphere Programme) and EGIS (Environmental Geographic information service) land cover data. When land use data change from IGBP to EGIS, urban ratio over the study area increased by 15.9%. The results of the study showed that the higher change in urban fraction between IGBP and EGIS, the higher the improvement in temperature performance, and the higher the urban fraction, the higher the effect of improving temperature performance of the urban parameterization scheme. 1.5-m temperature increased rapidly during the early morning due to increase of sensible heat flux in EXP2 compared to CTL. The MORUSES with EGIS (EXP3) provided best agreement with observations and represents a reasonable option for simulating the near surface temperature of urban area.

The Aesthetics of the Resurrection of Ecological Imagination: Marilynne Robinson's Housekeeping (생태학적 상상력의 소생의 미학 -메릴린 로빈슨의 『하우스키핑』)

  • Lee, Chung-Hee
    • Journal of English Language & Literature
    • /
    • v.57 no.1
    • /
    • pp.73-105
    • /
    • 2011
  • The purpose of this paper is to contend the importance of resurrection of fluid identity and ecological imagination for making the habitable biosphere in Marilynne Robinson's Housekeeping. Ruth as a narrator suggests the future-oriented vision that the environment and nature(mother) can be resurrected, crossing Fingerbone bridge of the boundary line of society/nature as a faithful follower of her aunt Sylvie and becoming the existence with a transparent voice despite of her absence. This novel is to rewrite the American pastoral. Based on the patriarchical way despite of the absence of Edmund Foster, Sylvia's conventional housekeeping is to divide between inside and outside of the house. Nevertheless, Sylvia's relentless efforts to keep her house intact turns out to be fragile. Contrasting with Sylvia, Sylvie's housekeeping is to recognize the continuity of inside and outside. She willingly accepts the reconciliation of the self, the nature and the society. After Ruth and Lucille's staying at night in the lake, they are diverged into going their own way. Ruth accepts Sylvie as a substitute mother. Lucille leaves the house voluntarily and go to her Home Economics teacher, Miss Royce, pursuing the ideal mother of symbolic society. Sylvie and Ruth has the more intimate bond, with their trip to the deserted house in the valley. Ruth meditates on the non-solidity of house and the resurrection of her family. Leaving their house to escape from the town people's legal enforcement, Sylvie and Ruth become transients. Although their history is completed by the drown-death publicly, they always want to visit Lucille's well kept house in Fingerbone. Therefore the method for making Ruth and Sylvie as the existences of ecological imagination return to the real world is to accept the reconciliation of nature and society. This novel is not limited as the binary opposition of vagrance/stability and transience/durability. The significant element of fluid identity can be composed of the interactions with transience and stability.

Interaction of 2-Hydroxyquinoxaline (2-HQ) on Soil Enzymes and Its Degradation: A Review

  • Gangireddygari, Venkata Subba Reddy;Bontha, Rajasekhar Reddy;Yoon, Ju-Yeon
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.4
    • /
    • pp.399-410
    • /
    • 2020
  • The United Nations project the world population to reach 10 billion by the year 2057. To increase the food of the ever-increasing world population, agrochemicals are indispensable tools to the boon in agriculture production. These agrochemicals are a serious threat to the health of humans, plants, and animals. Agrochemicals are ultimately reached to the main reservoir/sink such as soil and contaminating the groundwater, disturb the soil health and in turn a serious threat to biogeochemical cycling and the entire biosphere. Among agrochemicals, quinalphosis one of the most repeatedly and widely used insecticides in the control of a wide range of pests that attack various crops. Quinalphos is shown to be primarily toxic in organisms by acetylcholinesterase enzyme action. Hydrolysis of quinalphos produces amajor metabolite 2-hydroxyquinoxaline (2-HQ), which has shown secondary toxicity in organisms. 2-HQ is reported to be mutagenic, carcinogenic, growth inhibition and induce oxidative stress in organisms. Quinoline is a heterocyclic compound and structural resemblance of 2-HQ with minor changes, but its degradation studies are enormous compared to the 2-HQ compound. Biotic factors in fate and behavior of 2-HQ in the environment are least studied. 2-HQ interactions with soil enzymes are vary from soil to soil. Based on the toxicity of 2-HQ in our stockpile we need to isolate a handful of microorganisms to treat this persistent metabolite and also other metabolites/compounds.This brief review will be significant from the point of biological and environmental safety.

Biodegradation of marine microplastics by the whole-cell catalyst overexpressing recombinant PETase (PET분해효소(PETase) 과발현 전세포 촉매의 해양미세플라스틱 생분해 활성 연구)

  • Hyunji, Kim;Jong-Ha, Park;Ae-Ran, Park;Dae-Hee, Lee;Joonho, Jeon;Hyuk Taek, Kwon;Sung In, Lim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • The increased production and consumption of polyethylene terephthalate (PET)-based products over the past several decades has resulted in the discharge of countless tons of PET waste into the marine environment. PET microparticles resulting from the physical erosion of general PET wastes end up in the ocean and pose a threat to the marine biosphere and human health, necessitating the development of new technologies for recycling and upcycling. Notably, enzyme-mediated PET degradation is an appealing option due to its eco-friendly and energy-saving characteristics. PETase, a PET-hydrolyzing enzyme originating from Ideonella sakaiensis, is one of the most thoroughly researched biological catalysts. However, the industrial application of PETase-mediated PET recycling is limited due to the low stability and poor reusability of the enzyme. Here we developed the whole-cell catalyst (WCC) in which functional PETase is attached to the outer membrane of Escherichia coli. Immunoassays are used to identify the surface-expressed PETase, and we demonstrated that the WCC degraded PET microparticles most efficiently at 30℃ and pH 9 without agitation. Furthermore, the WCC increased the PET-degrading activity in a concentration-dependent manner, surpassing the limited activity of soluble PETase above 100 nM. Finally, we demonstrated that the WCC could be recycled up to three times.

Academic Development Status of Climate Dynamics in Korean Meteorological Society (한국기상학회 기후역학 분야 학술 발전 현황)

  • Soon-Il An;Sang-Wook Yeh;Kyong-Hwan Seo;Jong-Seong Kug;Baek-Min Kim;Daehyun Kim
    • Atmosphere
    • /
    • v.33 no.2
    • /
    • pp.125-154
    • /
    • 2023
  • Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

Water balance change at a transiting subtropical forest in Jeju Island

  • Kim, JiHyun;Jo, Kyungwoo;Kim, Jeongbin;Hong, Jinkyu;Jo, Sungsoo;Chun, Jung Hwa;Park, Chanwoo;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.99-99
    • /
    • 2022
  • Jeju island has a humid subtropical climate and this climate zone is expected to migrate northward toward the main land, Korea Peninsula, as temperature increases are accelerated. Vegetation type has been inevitably shifted along with the climatic change, having more subtropical species native in southeast Asia or even in Africa. With the forest composition shift, it becomes more important than ever to analyze the water balance of the forest wihth the ongoing as well as upcoming climate change. Here, we implemented the Ecosystem Demography Biosphere Model (ED2) by initializing the key variables using forest inventory data (diameter at breast height in 2012). Out of 10,000 parameter sets randomly generated from prior distribution distributions of each parameter (i.e., Monte-Carlo Method), we selected four behavioral parameter sets using remote-sensing data (LAI-MOD15A2H, GPP-MOD17A2H, and ET-MOD16A2, 8-days at 500-m during 2001-2005), and evaluated the performances using eddy-covariance carbon flux data (2012 Mar.-Sep. 30-min) and remote sensing data between 2006-2020. We simulated each of the four RCP scenarios (2.6, 4.5, 6.0, and 8.5) from four climate forcings (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5 from ISIMIP2b). Based on those 64 simulation sets, we estimate the changes in water balance resulting from the forest composition shift, and also uncertainty in the estimates and the sensitivity of the estimates to the parameters, climate forcings, and RCP scenarios.

  • PDF

Understanding the Water Cycle Process and Composition Elements of High School Students (고등학생들의 물 순환 과정과 구성 요소에 대한 이해)

  • Lee, Dong-Eun;Jeong, Jin-Woo;Kim, Yun-Ji
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2008
  • This study aims at examining the concepts that apply in understanding the water cycle, to inquire into the concept related to the unit of earth structure that are taught in the Earth Science I. Analysis of word association, drawing and questionnaires showed that it was difficult for them to understand the water cycle within the earth system, and to put components into one integrated system together. In other words, it showed that they have a low standard of understanding in connection with the water cycle, that their understanding of water cycle are simple thoughts rather than systematic thought. It showed that they had an understanding of the atmosphere and hydrosphere to some extent, but they took no notice of the effect of the lithosphere or biosphere, nor do they have an understanding of its effect. Analysis of questionnaires showed that they have no well understanding of water cycle of cyclic nature, and that they have low standard of understanding of the components of water cycle.

Landscape Analysis of the Hallasan National Park in a Jeju Island Biosphere Reserve: Fragmentation Pattern (제주 생물권보전지역 내 한라산국립공원의 경관분석 : 단편화 현상)

  • Kang, Hye-Soon;Kim, Hyun-Jung;Chang, Eun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.3
    • /
    • pp.309-319
    • /
    • 2008
  • Roads are an indicator of anthropogenic activity causing ecosystem disturbances and often lead to habitat fragmentation, habitat loss, and habitat isolation. The Hallasan National Park(153.4$km^2$) on Jeju Island being distinguished for its unique geology, topography, and biota has also been designated as a core area of UNESCO Man and the Biosphere(MAB) Reserve. Although the high conservation value of this park has contributed to a rapid growth of tourists and road construction, landscape changes due to roads have not been examined yet. We used GIS systems to examine the fragmentation pattern caused by roads, in relation to its zonation, elevation, and vegetation. When a buffer was applied to roads(112m width for paved roads and 60m width for both legal and illegal trails), the park consisted of 100 fragments. The ten fragments generated after applying buffer to only paved roads and legal trails ranged from $0.002km^2$ to $38.2km^2$ with a mean of $14.2km^2$, and about 7% of both nature conservation zone and nature environment zone of the park were edge. Fragments in both east and west ends of the park and around the summit exhibited relatively high shape indices with means of 5.19(for 100 fragments) and 7.22(for 10 fragments). All five legal trails are connected to the pit crater of the mountain and vegetation changed from broadleaf forests and conifer forests to grasslands with elevation, consequently resulting in dramatic fragment size reduction in grasslands at high elevation, in particular above 1,400m, where endemic and alpine plants are abundant. These results show that in Hallasan National Park the risks of habitat deterioration and habitat loss due to fragmentation may be more severe in the nature conservation zone dominated by Baengnokdam than in the nature environment zone. Therefore, current road networks of the park appear to fall short of the goal of the national park for ecosystem conservation and protection. Considering that the entire Hallasan National Park also serves as a MAB core area, conservation efforts should focus, first of all, on park rezoning and road management to mitigate habitat fragmentation.

The Ecological Values of the Korean Demilitarized Zone(DMZ) and International Natural Protected Areas (비무장지대(DMZ)의 생태적 가치와 국제자연보호지역)

  • Cho, Do-soon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.272-287
    • /
    • 2019
  • The Korean Demilitarized Zone (DMZ) was established in 1953 by the Korean War Armistice Agreement. It extends from the estuary of the Imjin River, in the west, to the coast of the East Sea. It is 4 km in width and 148 km in length. However, the ecosystems of the civilian control zone (CCZ) located between the southern border of the DMZ and the civilian control line (CCL) and the CCZ in the estuary of the Han River and the Yellow Sea are similar to those in the DMZ, and, therefore, the ecosystems of the DMZ and the CCZ are collectively known as the "ecosystems of the DMZ and its vicinities." The flora in the DMZ and its vicinities is composed of 1,864 species, which accounts for about 42% of all the vascular plant species on the Korean Peninsula and its affiliated islands. Conducting a detailed survey on the vegetation, flora, and fauna in the DMZ is almost impossible due to the presence of landmines and limitations on the time allowed to be spent in the DMZ. However, to assess the environmental impact of the Munsan-Gaesong railroad reconstruction project, it was possible to undertake a limited vegetation survey within the DMZ in 2001. The vegetation in Jangdan-myeon, in Paju City within the DMZ, was very simple. It was mostly secondary forests dominated by oaks such as Quercus mongolica, Q. acutissima, and Q. variabilis. The other half of the DMZ in Jangdan-myeon was occupied by grassland composed of tall grasses such as Miscanthus sinensis, M. sacchariflorus, and Phragmites japonica. Contrary to the expectation that the DMZ may be covered with pristine mature forests due to more than 60 years of no human interference, the vegetation in the DMZ was composed of simple secondary forests and grasslands formed on former rice paddies and agricultural fields. At present, the only legal protection system planned for the DMZ is the Natural Environment Conservation Act, which ensures that the DMZ would be managed as a nature reserve for only two years following Korean reunification. Therefore, firstly, the DMZ should be designated as a site of domestic legally protected areas such as nature reserve (natural monument), scenic site, national park, etc. In addition, we need to try to designate the DMZ as a UNESCO Biosphere Reserve or as a World Heritage site, or as a Ramsar international wetland for international cooperation. For nomination as a world heritage site, we can emphasize the ecological and landscape value of the wetlands converted from the former rice paddies and the secondary forests maintained by frequent fires initiated by military activities. If the two Koreas unexpectedly reunite without any measures in place for the protection of nature in the DMZ, the conditions prior to the Korean War, such as rice paddies and villages, will return. In order to maintain the current condition of the ecosystems in the DMZ, we have to discuss and prepare for measures including the retention of mines and barbed-wire fences, the construction of roads and railroads in the form of tunnels or bridges, and the maintenance of the current fire regime in the DMZ.