DOI QR코드

DOI QR Code

Academic Development Status of Climate Dynamics in Korean Meteorological Society

한국기상학회 기후역학 분야 학술 발전 현황

  • Soon-Il An (Department of Atmospheric Sciences, Yonsei University) ;
  • Sang-Wook Yeh (Department of Marine Sciences and Convergence Technology, Hanyang University, ERICA) ;
  • Kyong-Hwan Seo (Department of Atmospheric Sciences, Research Center for Climate Sciences, Pusan National University) ;
  • Jong-Seong Kug (Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Baek-Min Kim (Department of Environmental Atmospheric Sciences, Pukyong National University) ;
  • Daehyun Kim (Department of Atmospheric Sciences, University of Washington)
  • 안순일 (연세대학교 대기과학과) ;
  • 예상욱 (한양대학교) ;
  • 서경환 (부산대학교 대기환경과학과, 기후과학연구소) ;
  • 국종성 (포항공과대학교 환경공학부) ;
  • 김백민 (부경대학교 환경대기과학과) ;
  • 김대현 (워싱턴 주립 대학교 대기과학과)
  • Received : 2022.10.09
  • Accepted : 2022.11.18
  • Published : 2023.03.31

Abstract

Since the Korean Meteorological Society was organized in 1963, the climate dynamics fields have been made remarkable progress. Here, we documented the academic developments in the area of climate dynamics performed by members of Korean Meteorological Society, based on studies that have been published mainly in the Journal of Korean Meteorological Society, Atmosphere, and Asia-Pacific Journal of Atmospheric Sciences. In these journals, the fundamental principles of typical ocean-atmosphere climatic phenomena such as El Niño, Madden-Julian Oscillation, Pacific Decadal Oscillation, and Atlantic Multi-decadal Oscillation, their modeling, prediction, and its impact, are being conducted by members of Korean Meteorological Society. Recently, research has been expanded to almost all climatic factors including cryosphere and biosphere, as well as areas from a global perspective, not limited to one region. In addition, research using an artificial intelligence (AI), which can be called a cutting-edge field, has been actively conducted. In this paper, topics including intra-seasonal and Madden-Julian Oscillations, East Asian summer monsoon, El Niño-Southern Oscillation, mid-latitude and polar climate variations and some paleo climate and ecosystem studies, of which driving mechanism, modeling, prediction, and global impact, are particularly documented.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사를 드립니다. 안순일은 2018년도 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받았음(NRF-2018R1A5A1024958). 서경환은 과학기술정보통신부의 한국연구재단의 기초연구사업 (No. NRF-2020R1A2C2009414)와 기상청의 연구개발사업(KMI2020-01114)의 지원을 받았음. 김대현은 한국연구재단을 통해 과학기술정보통신부의 「해외우수과학자유치사업」 의 지원을 받았음(NRF-2021H1D3A2A01039352).

References

  1. Ahn, M.-S., and Coauthors, 2020: MJO propagation across the maritime continent: are CMIP6 models better than CMIP5 models? Geophys. Res. Lett., 47, doi: 10.1029/2020GL087250.
  2. An, S.-I., 2004: Interdecadal changes in the El Nino-La Nina asymmetry, Geophy. Res. Lett., 31, doi: 10.1029/2004GL021699.
  3. An, S.-I., and H. Bong, 2015: Inter-decadal change in El Nino-Southern Oscillation examined with Bjerknes stability index analysis. Clim. Dyn., 47, 967-979, doi:10.1007/s00382-015-2883-8.
  4. An, S.-I., and J. Choi, 2009: Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature. Atmos. Res., 94, 3-9. https://doi.org/10.1016/j.atmosres.2008.09.029
  5. An, S.-I., and J. Choi, 2013: Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a Coupled General Circulation Model, Clim. Dyn., 40, 663-675, doi: 10.1007/s00382-012-1403-3.
  6. An, S.-I., Y.-G. Ham, J.-S. Kug, A. Timmermann, J. Choi, and I.-S. Kang, 2010: The inverse effect of annual mean state and annual cycle changes on ENSO. J. Climate, 23, 1095-1110. https://doi.org/10.1175/2009JCLI2895.1
  7. An, S.-I., W. W. Hsieh, and F.-F. Jin, 2005: A nonlinear analysis of ENSO cycle and its interdecadal changes. J. Climate, 18, 3229-3239. https://doi.org/10.1175/JCLI3466.1
  8. An, S.-I., S.-H. Im, and S.-Y. Jun, 2018: Changes in ENSO activity during the last 6,000 years modulated by background climate state. Geophys. Res. Lett., 45, 2497-2475, doi: 10.1002/2017GL076250.
  9. An, S.-I., and F.-F. Jin, 2000: An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys. Res. Lett., 27, 1573-1576. https://doi.org/10.1029/1999GL011090
  10. An, S.-I., and F.-F. Jin, 2001: Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J. Climate, 14, 3421-3432. https://doi.org/10.1175/1520-0442(2001)014<3421:CROTAZ>2.0.CO;2
  11. An, S.-I., and F.-F. Jin, 2004: Nonlinearity and asymmetry of ENSO. J. Climate, 17, 2399-2412. https://doi.org/10.1175/1520-0442(2004)017<2399:NAAOE>2.0.CO;2
  12. An, S.-I., and F.-F. Jin, 2011: Linear solutions for the frequency and amplitude modulation of ENSO by the annual cycle. Tellus. A., 63, 238-243, doi: 10.1111/j.1600-0870.2010.00482.x.
  13. An, S.-I., F.-F. Jin, and I.-S. Kang, 1999: The role of zonal advection feedback in phase transition and growth of ENSO in the Cane-Zebiak model. J. Meteor. Soc. Japan, 77, 1151-1160. https://doi.org/10.2151/jmsj1965.77.6_1151
  14. An, S.-I., and I.-S. Kang, 2000: A further investigation of the recharge oscillator paradigm for ENSO using a simple coupled model with the zonal mean and eddy separated. J. Climate, 13, 1987-1993. https://doi.org/10.1175/1520-0442(2000)013<1987:AFIOTR>2.0.CO;2
  15. An, S.-I., and I.-S. Kang, 2001: Tropical Pacific basin-wide adjustment and oceanic waves. Geophy. Res. Lett., 28, 3975-3978. https://doi.org/10.1029/2001GL013363
  16. An, S.-I., H.-J. Kim, W. Park, and B. Schneider, 2017: Impact of ENSO on East Asian winter monsoon during interglacial periods: effect of orbital forcing. Clim. Dyn., 49, 3209-3219, doi: 10.1007/s00382-016-3506-8.
  17. An, S.-I., and J.-W. Kim, 2017: Role of nonlinear ocean dynamic response to wind on the asymmetrical transition of El Nino and La Nina. Geophys. Res. Lett., 44, 393-400, doi: 10.1002/ 2016GL071971.
  18. An, S.-I., J.-S. Kug, Y.-G. Ham, and I.-S. Kang, 2008: Successive modulation of ENSO to the future greenhouse warming. J. Climate, 21, 3-21, doi: 10.1175/2007JCLI1500.1.
  19. An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and it impact on the ENSO frequency. J. Climate, 13, 2044-2055. https://doi.org/10.1175/1520-0442(2000)013<2044:ICOTSO>2.0.CO;2
  20. An, S.-I., and B. Wang, 2001: Mechanisms of locking the El Nino and La Nina mature phases to boreal winter. J. Climate, 27, 2164-2176. https://doi.org/10.1175/1520-0442(2001)014<2164:MOLOTE>2.0.CO;2
  21. An, S.-I., Z. Ye, and W. Hsieh, 2006: Changes in the leading ENSO modes associated with the late 1970s climate shift: Role of surface zonal current. Geophys. Res. Lett., 33, doi: 10.1029/2006GL026604.
  22. Bae, H.-J., S.-J. Kim, B.-M. Kim, and H. Kwon, 2022: Causes of the extreme hot event on February 9, 2020, in Seymour Island, Antarctic Peninsula. Front. Environ. Sci., 10, 1-9, doi: 10.3389/fenvs.2022.865775.
  23. Cha, Y.-M., H.-S. Lee, J. Moon, W.-T. Kwon, and K.-O. Boo, 2007: Future climate projection over East Asia using ECHO-G/S. Atmosphere, 17, 55-68.
  24. Chaudhari, H. S., and J. H. Oh, 2003: Validation of intraseasonal and interannual variability of Indian summer monsoon in NCEP/NCAR reanalysis. Atmosphere, 13, 226-227.
  25. Choi, J., and S.-I. An, 2013: Quantifying the residual effects of ENSO on low-frequency variability in the tropical Pacific. Int. J. Climatol., 33, doi: 10.1002/joc.3470.
  26. Choi, J., S.-I. An, B. Dewitte, and W.-W. Hsieh, 2009: Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J. Climate, 22, 6597-6611, doi:10.1175/2009JCLI2782.1.
  27. Choi, J., S.-I. An, J.-S. Kug, and S.-W. Yeh, 2011: The role of mean state on changes in El Nino's flavor. Clim. Dyn., 37, 1205-1215, doi: 10.1007/s00382-010-0912-1.
  28. Choi, J., S.-I. An, and S.-W. Yeh, 2012: Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim. Dyn., 38, 2631-2644, doi: 10.1007/s00382-011-1186-y.
  29. Choi, W., and H. Kim, 2010: Annual variation and trends of the Arctic tropopause pressure. Atmosphere, 20, 355-366.
  30. Choi, W., and S. Yook, 2022: Relationship between Arctic sea ice in autumn and subsequent july air temperature over East Asia and the Western North Pacific. Asia-Pac. J. Atmos. Sci., 58, 197-205, doi: 10.1007/s13143-021-00249-y.
  31. Chu, J.-E., and K.-J. Ha, 2011: Classification of intraseasonal oscillation in precipitation using Self-Organizing Map for the east Asian summer monsoon. Atmosphere, 21, 221-228, doi: 10.14191/Atmos.2011.21.3.221.
  32. Chun, H.-Y., and J.-M. Ryoo, 2005: A case study of dynamical linkage between the troposphere and stratosphere associated with stratospheric major sudden warmings in 1979 and 1984. Asia-Pac. J. Atmos. Sci., 41, 415-430.
  33. Chun, Y.-S., and S.-U. Park, 1990: Characteristics of the regional circulation over Asia during the dry Changma period in 1982. J. Korean Meteor. Soc., 26, 12-24.
  34. Cohen, J., and Coauthors, 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627-637, doi: 10.1038/ngeo2234.
  35. Cohen, J., and Coauthors, 2020: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Clim. Change, 10, 20-29, doi:10.1038/s41558-019-0662-y.
  36. Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical-extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 1878-1896, doi: 10.1175/2011JCLI3621.1.
  37. Drbohlav, H.-K. L., and B. Wang, 2003: The mechanism of the northward propagating intraseasonal oscillation: insights from a zonally symmetric model. Atmosphere, 13, 68-69.
  38. Ha, K.-J., S.-K. Park, and K.-Y. Kim, 2003: Interannual variability in summer precipitation around the Korean Peninsula and its associated East Asian summer circulation. J. Korean Meteor. Soc., 39, 575-586.
  39. Ha, K.-J., Y.-K. Seo, A.-S. Suh, H.-S. Chung, and B.-J. Sohn, 2001: Interaction between the land surface condition and El-Nino associated with the interannual variation of Monsoon rainfall in the East Asia. J. Korean Meteor. Soc., 37, 381-398.
  40. Ha, K.-J., K.-S. Yun, J.-G. Jhun, and C.-K. Park, 2005: Definition of onset/retreat and intensity of Changma during the boreal summer monsoon season. J. Korean Meteor. Soc., 41, 927-942.
  41. Ham, S., and S.-Y. Hong, 2013: Sensitivity of simulated intraseasonal oscillation to four convective parameterization schemes in a coupled climate model. AsiaPac J. Atmos. Sci., 49, 483-496, doi: 10.1007/s13143-013-0043-9.
  42. Ham, Y.-G., J.-Y. Choi, and J.-S. Kug, 2017: The weakening of the ENSO-Indian Ocean Dipole (IOD) coupling strength in recent decades, Clim. Dyn., 49, 249-261, doi: 10.1007/s00382-016-3339-5.
  43. Ham, Y.-G., Y. Jeong, and J.-S. Kug, 2015: Changes in independency between two types of El Nino events under greenhouse warming scenario in CMIP5 models. J. Clim., 28. 7561-7575, doi: 10.1175/JCLI-D-14-00721.1.
  44. Ham, Y.-G., I.-S. Kang, D. Kim, and J.-S. Kug, 2012: El Nino Southern Oscillation simulated and predicted in the SNU coupled GCMs. Clim. Dyn., 38, 2227-2242, doi:10.1007/s00382-011-1171-5.
  45. Ham, Y.-G., J. H. Kim, and J. J. Luo, 2019: Deep learning for multi-year ENSO forecasts. Nature, 573, 568-572, doi: 10.1038/s41586-019-1559-7.
  46. Ham, Y.-G., J. H. Kim, and J. J. Luo, 2021: Recent progress in ENSO forecast using deep learning. Clivar. Exchanges, 81, doi: 10.36071/clivar.81.2021.
  47. Ham, Y.-G., and J.-S. Kug, 2014: ENSO phase-locking to the boreal winter in CMIP3 and CMIP5 models. Clim. Dyn., 43, 305-318, doi: 10.1007/s00382-014-2064-1.
  48. Ham, Y.-G., and J.-S. Kug, 2015: Role of North Tropical Atlantic SST on the ENSO simulated using CMIP3 and CMIP5 models. Clim. Dyn., 45, 3103-3117, doi: 10.1007/s00382-015-2527-z.
  49. Ham, Y.-G., and J.-S. Kug, 2016: ENSO amplitude changes due to greenhouse warming in CMIP5: Role of mean tropical precipitation in the 20th century. Geophy. Res. Lett., 43, 422-430, doi: 10.1002/2015GL066864.
  50. Ham, Y.-G., J.-S. Kug, and J.-Y. Park, 2013b: Two distinct roles of Atlantic SSTs in ENSO variability: North Tropical Atlantic SST and Atlantic Nino. Geophy. Res. Lett., 40, 1-6, doi: 10.1002/grl.50729.
  51. Ham, Y.-G., J.-S. Kug, J.-Y. Park, and F.-F. Jin, 2013a: Sea surface temperature in the North Tropical Atlantic as a trigger for El Nino. Nat. Geosci., 6, 112-116, doi: 10.1038/NGEO1686.
  52. Ham, Y.-G., J.-S. Kug, W. -H. Yang, and W.-J. Cai, 2018: Future changes in extreme El Nino events modulated by North Tropical Atlantic variability. Geophy. Res. Lett., 45, 6646-6653, doi: 10.1029/2018GL078085.
  53. Ham, Y.-G., H.-Y. Na, and S.-H. Oh, 2019: Role of sea surface temperature over the Kuroshio extension region on heavy rainfall events over the Korean Peninsula. Asia-Pac J. Atmos. Sci., 55, 19-29, doi: 10.1007/s13143-018-0061-8.
  54. Han, J.-W., and B.-J. Sohn, 1996: Climate characteristics of the east Asian monsoon related to heat budget. J. Korean Meteor. Soc., 32, 619-633.
  55. Heo, S.-J., K.-J. Ha, and S.-E. Moon, 1997: Characteristic features of the east Asian summer monsoon during 1993 and 1994. J. Korean Meteor. Soc., 33, 737-751.
  56. Holton, J. R., 2004: An Introduction to Dynamic Meteorology, 88, International Geophysics Series. Elsevier Academic Press, 535 pp.
  57. Hong, J.-Y., B.-M. Kim, E.-H. Baek, H.-J. Kim, X. Zhang, and S.-J. Kim, 2020: A critical role of extreme Atlantic windstorms in Arctic warming. Asia-Pac. J. Atmos. Sci., 56, 17-28, doi: 10.1007/s13143-019-00123-y.
  58. Hwang, J.-D., and C.-K. Park, 2000: Characteristics of circulation pattern over East Asia associated with heavy rainfall events in Korea during the summer 1999. J. Korean Meteor. Soc., 36, 573-582.
  59. Im, S.-H., S.-I. An, S. T. Kim, and F.-F. Jin. 2015: Feedback processes responsible for El Nino-La Nina amplitude asymmetry. Geophys. Res. Lett., 42, 5556-5563, doi: 10.1002/2015GL064853.
  60. Jang, H.-Y., and S.-W. Yeh, 2013: Analysis of atmosphereocean interactions over South China Sea and its relationship with northeast Asian precipitation variability during summer. Atmosphere, 23, 283-291, doi: 10.14191/Atmos.2013.23.3.283.
  61. Jang, Y.-K., and J.-G. Jhun, 2004: Variation of western North Pacific convection and its influence on EastAsian summer monsoon. J. Korean Meteor. Soc., 40, 259-271.
  62. Jang, Y.-S., D. Kim, Y.-H. Kim, D.-H. Kim, M. Watanabe, F.-F. Jin, and J.-S. Kug, 2013: Simulation of two types of El Nino from different convective parameters. AsiaPac. J. Atmos. Sci., 49, 193-199, doi: 10.1007/s13143-013-0020-3.
  63. Jeong, J.-H., and C.-H. Ho, 2003: The Madden-Julian Oscillation signal in the Arctic oscillation. Atmosphere, 13, 374-377, doi: 10.3389/feart.2021.787680.
  64. Jeong, J. I., R. J. Park, and S. W. Yeh, 2018: Dissimilar effects of two El Nino types on PM2. 5 concentrations in East Asia. Environ. Pollut., 242, 1395-1403, doi: 10.1016/j.envpol.2018.08.031.
  65. Jiang, X., and Coauthors, 2020: Fifty years of research on the Madden-Julian Oscillation: recent progress, challenges, and perspectives. J. Geophys. Res. Atmos., 125, doi: 10.1029/2019JD030911.
  66. Jiang, X., T. Li, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Clim., 17, 1022-1039, doi:10.1175/1520-0442(2004)017<1022:SAMOTN>2.0.CO;2.
  67. Jin, C. S., C. H. Ho, J. H. Kim, D. K. Lee, D. H. Cha, and S. W. Yeh, 2013: Critical role of northern off-equatorial sea surface temperature forcing associated with central pacific El Nino in more frequent tropical cyclone movements toward East Asia. J. Climate., 26, 2534-2545, doi: 10.1175/JCLI-D-12-00287.1.
  68. Jin, E. K., and Coauthors, 2008: Current status of ENSO prediction skill in coupled ocean-atmosphere models. Clim. Dyn., 31, 647-664, doi: 10.1007/s00382-008-0397-3.
  69. Jin, F.-F., and S.-I. An, 1999: Thermocline and zonal advection feedbacks within the equatorial ocean recharge oscillator model for ENSO. Geophys. Res. Lett., 26, 2989-2992. https://doi.org/10.1029/1999GL002297
  70. Jin, F.-F., A. Timmermann, and J. Zhao, 2003: Strong El Nino events and nonlinear dynamical heating. Geophys. Res. Letts., 30, 1120.
  71. Jin, K., and I.-S. Kang, 2001: Intercomparison of intraseasonal oscillations in 10 AGCMs during the 1997-98 El Nino. Atmosphere, 11, 373-375. https://doi.org/10.3390/atmos11040373
  72. Jin, F.-F., A. Timmermann, and M.-I. Lee, 2003: An investigation for the improvement of MJO simulations in SNU GCM. Atmosphere, 13, 218-219.
  73. Jo, E., C. Park, S.-W. Son, J.-W. Roh, G.-W. Lee, and Y.-H. Lee, 2020: Classification of localized heavy rainfall events in South Korea. Asia-Pac. J. Atmos. Sci., 56, 77-88. https://doi.org/10.1007/s13143-019-00128-7
  74. Jun, S.-Y., 2019: Simulation of past 6000-year climate by using the Earth system model of intermediate complexity LOVECLOM. Atmosphere, 29, 87-103, doi: 10.14191/Atmos.2019.29.1.087.
  75. Jun, S.-Y., J.-H. Kim, J. Choi, S.-J. Kim, B.-M. Kim, and S.-I. An, 2020: The internal origin of the west-east asymmetry of Antarctic climate change. Sci. Adv., 6, doi: 10.1126/sciadv.aaz1490.
  76. Jung, C.-Y., H.-J. Shin, C. J. Jang, and H.-J. Kim, 2015: Projected change in East Asian summer monsoon by dynamic downscaling: Moisture budget analysis. AsiaPac. J. Atmos. Sci., 51, 77-89, doi: 10.1007/s13143-015-0061-x.
  77. Jung, J.-H., and M.-S. Suh, 2005: Characteristics and types of the diurnal variation of hourly precipitation during rainy season over South Korea. J. Korean Meteor. Soc., 41, 533-546.
  78. Kang, I.-S., and S.-I. An, 1998: Kelvin and Rossby wave contributions to the SST oscillation of ENSO. J. Climate, 11, 2461-2469. https://doi.org/10.1175/1520-0442(1998)011<2461:KARWCT>2.0.CO;2
  79. Kang, I.-S., S.-I. An, and F.-F. Jin, 2001: A Systematic Approximation of the SST Anomaly Equation for ENSO. J. Meteor. Soc. Japan, 79, 1-10. https://doi.org/10.2151/jmsj.79.1
  80. Kang, I.-S., S.-I. An, C.-H. Joung, S.-C. Yoon, and S.-M. Lee, 1989: 30-60 day oscillation appearing in climatological variation of outgoing longwave radiation around east Asia during summer. Asia-Pac. J. Atmos. Sci., 25, 221-232.
  81. Kang, I.-S., C.-H. Ho, Y.-K. Lim, and K.-M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322-340, doi: 10.1175/1520-0493 (1999)127<0322:PMOCSA>2.0.CO;2.
  82. Kang, I.-S., C.-H. Ho, and S. S. Kim, 1987: Interannual and intraseasonal variations of summer precipitation simulated by a GCM and the influence of tropical Pacific SST on the interannual variability. Asia-Pac. J. Atmos. Sci., 23, 12-24.
  83. Kang, I.-S., and J.-S. Kug, 2000: An El Nino prediction model with an intermediate ocean and statistical atmosphere system. Geophys. Res. Letter., 27, 1167-1170. https://doi.org/10.1029/1999GL011023
  84. Kang, I.-S., and J.-S. Kug, 2002: El Nino and La Nina SST anomalies: asymmetric characteristics associated with their wind stress anomalies. J. Geophys. Res., 107, 4372, doi: 10. 1029/2001JD000393. https://doi.org/10.1029/2001JD000393
  85. Kang, I.-S., Y.-M. Lee, and S.-I. An, 1995: Interannual variability of Typhoon activity over the western Pacific and El Nino. Asia-Pac. J. Atmos. Sci., 31, 15-26.
  86. Kim, B.-M., K.-Y. Kim, and G. -H. Lim, 2003: Evidence of the interaction between intraseasonal oscillation of the midlatitude flow and tropical convection deduced by CSEOF. Atmosphere, 13, 224-225.
  87. Kim, B.-M., H. Choi, S.-J. Kim, and W. Choi, 2017: Amplitude-dependent relationship between the Southern Annular Mode and the El Nino Southern Oscillation in austral summer. Asia-Pac. J. Atmos. Sci., 53, 85-100, doi: 10.1007/s13143-017-0007-6.
  88. Kim, B.-M., J.-Y. Hong, S.-Y. Jun, X. Zhang, H. Kwon, S.-J. Kim, J.-H. Kim, S.-W. Kim, and H.-K. Kim, 2017a: Major cause of unprecedented Arctic warming in January 2016: Critical role of an Atlantic windstorm. Sci. Rep., 7, 40051, doi: 10.1038/srep40051.
  89. Kim, B.-M., E. Jung, G.-H. Lim, and H. Kim, 2014: Analysis on winter atmospheric variability related to arctic warming. Atmosphere, 24, 131-140, doi: 10.14191/Atmos.2014.24.2.131.
  90. Kim, B.-M., S.-W. Son, S.-K. Min, J.-H. Jeong, S.-J. Kim, X. Zhang, T. Shim, and J.-H. Yoon, 2014: Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat. Commun., 5, 4646, doi: 10.1038/ncomms5646.
  91. Kim, G.-I., and J.-S. Kug, 2020: Tropical Pacific decadal variability induced by nonlinear rectification of El Nino-Southern Oscillation. J. Climate., 33, 7289-7302, doi: 10.1175/JCLI-D-19-0123.1.
  92. Kim, G.-I., and J.-S. Kug, 2022: Process-based analysis of El Nino/Southern Oscillation decadal modulation. J. Climate, 35, 4753-4769, doi: 10.1175/JCLI-D-21-0181.1.
  93. Kim, H.-K., K.-H. Seo, S.-W. Yeh, N.-Y. Kang, and B.-K. Moon, 2020: Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s. Clim. Dyn., 54, 661-673, doi: 10.1007/s00382-019-05020-8.
  94. Kim, J., H.-K. Cho, Y.-J. Jung, Y.-G. Lee, and B.-Y. Lee, 2006: Surface energy balance at Sejong Station, King George Island, Antarctica. Atmosphere, 16, 111-124.
  95. Kim, J., M. Kwon, S.-D. Kim, J.-S. Kug, J.-G. Ryu, and J. Kim, 2022: Spatiotemporal neural network with attention mechanism for El Nino forecast. Sci. Rep., 12, 7204, doi: 10.1038/s41598-022-10839-z.
  96. Kim, J.-S., K. Y. Kim, and S. W. Yeh, 2012: Statistical evidence for the natural variation of the central Pacific El Nino. J. Geophys. Res-Oceans., 117, doi: 10.1029/2012JC008003.
  97. Kim, J.-S., and J.-S. Kug, 2019: Role of subtropical SST in El Nino teleconnection to East Asia during the decaying phase. Clim. Dyn., doi: 10.1007/s00382-016-3473-0.
  98. Kim, J.-S., J.-S. Kug, S.-W. Yeh, H.-K. Kim and E.-H. Park, 2014: Relation between climate variability in Korea and two types of El Nino, and their sensitivity to definition of two types of El Nino. Atmosphere, 24, 89-99, doi: 10.14191/Atmos.2014.24.1.089.
  99. Kim, J. W., S.-I. An, S.-Y. Jun, H.-J. Park, and S.-W. Yeh, 2016: ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Clim. Dyn., 49, 1157-1179, doi: 10.1007/s00382-016-3371-5.
  100. Kim, J. W., S. W. Yeh, and E. C. Chang, 2014: Combined effect of El Nino-Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Clim. Dyn., 42, 957-951, doi: 10.1007/s00382-013-1730-z.
  101. Kim, J.-Y., Y.-K. Hyun, J. Lee, and B.-C. Shin, 2021: Assessment on the East Asian summer monsoon simulation by improved Global Coupled (GC) model. Atmosphere, 31, 563-576, doi: 10.14191/Atmos.2021.31.5.563.
  102. Kim, J.-Y., K.-H. Seo, J.-H. Son, and K.-J. Ha, 2017a: Development of statistical prediction models for Changma precipitation: An Ensemble Approach. Asia-Pac. J. Atmos. Sci., 53, 207-216, doi: 10.1007/s00382-016-3371-5.
  103. Kim, J.-Y., K.-H. Seo, S.-W. Yeh, H.-K. Kim, S.-Y. Yim, H.-S. Lee, M. Kwon, and Y.-G. Ham, 2017b: Analysis of characteristics for 2016 Changma rainfall. Atmosphere, 27, 277-290, doi: 10.14191/Atmos.2017.27.3.277.
  104. Kim, K.-Y., B. D. Hamlington, H. Na, and J. Kim, 2016a: Mechanism of seasonal Arctic sea ice evolution and Arctic amplification. Cryosphere, 10, 2191-2202, doi:10.5194/tc-10-2191-2016.
  105. Kim, K.-Y., J.-Y. Kim, J. Kim, S. Yeo, H. Na, B. D. Hamlington, and R. R. Leben, 2019: Vertical feedback mechanism of winter Arctic amplification and sea ice loss. Sci. Rep., 1184, doi: 10.1038/s41598-018-38109-x.
  106. Kim, K.-Y., and Y. Kim, 2017: A comparison of sea level projections based on the observed and reconstructed sea level data around the Korean Peninsula. Climate Change, 142, 23-36, doi: 10.1007/s10584-017-1901-8.
  107. Kim, S., H.-S. Kim, S.-K. Min, H.-Y. Son, D.-J. Won, H.-S. Jung and J.-S. Kug, 2015: Intra-winter atmospheric circulation changes over East Asia associated with ENSO in a seasonal prediction model. Asia-Pac. J. Atmos. Sci., 51, 49-60, doi: 10.1007/s13143-014-0059-9.
  108. Kim, S.-W., H.-Y. Son, and J.-S. Kug, 2017: How well do climate models simulate atmospheric teleconnection over East Asia and the North Pacific associated with ENSO? Clim. Dyn., 48, 971-985, doi: 10.1007/s00382-016-3121-8.
  109. Kim, S.-W., H. Kim, K. Song, S.-W. Son, Y. Lim, H.-S. Kang, and Y.-K. Hyun, 2018a: Subseasonal-to-Seasonal (S2S) prediction skills of GloSea5 model: part 1. geopotential height in the Northern hemisphere Extratropics. Atmosphere, 28, 233-245, doi: 10.14191/Atmos.2018.28.3.233.
  110. Kim, S.-T., W. Cai, F.-F. Jin, A. Santoso, L. Wu, E. Guilyardi, and S.-I. An, 2014: Response of El Nino sea surface temperature variability to greenhouse warming, Nat. Clim. Change, 4, doi: 10.1038/nclimate2326.
  111. Kim, S.-Y., and J.-S. Kug, 2018: What controls ENSO teleconnection to East Asia? role of western North Pacific precipitation in ENSO teleconnection to East Asia. J. Geophys. Res-Atmos., 123, 10406-10422, doi: 10.1029/2018JD028935.
  112. Kim, S.-Y., H.-Y. Son, and J.-S. Kug, 2018b: Relative roles of equatorial central Pacific and western North Pacific precipitation anomalies in ENSO teleconnection over the North Pacific. Clim. Dyn., 51, 11-12, doi: 10.1007/s00382-017-3779-6.
  113. Kim, W. M., S. W. Yeh, J. H. Kim, J. S. Kug, and M. H. Kwon, 2011: The unique 2009~2010 El Nino event: a fast phase transition of warm pool El Nino to La Nina. Geophys. Res. Lett., 38, doi: 10.1029/2011GL048521.
  114. Kim, Y., H.-R. Kim, Y.-S. Choi, W.-M. Kim, and H.-S. Kim, 2016: Development of statistical seasonal prediction models of Arctic Sea Ice concentration using CERES absorbed solar radiation. Asia-Pac. J. Atmos. Sci., 52, 467-477, doi: 10.1007/s13143-016-0031-y.
  115. KMA, 2012: White Note on Changma 2011, Korea Meteorological Administration, 267 pp (in Korean).
  116. Konda, G., and N. K. Vissa, 2021: Assessment of oceanatmosphere interactions for the boreal summer intraseasonal oscillations in CMIP5 models over the Indian Monsoon Region. Asia-Pac. J. Atmos. Sci., 57, 717-739, doi: 10.1007/s13143-021-00228-3.
  117. Kug, J.-S., M.-S. Ahn, M.-K. Sung, S.-W. Yeh, H.-S. Min, and Y.-H. Kim, 2010b: Statistical relationship between two types of El Nino events and climate variation over the Korean Peninsula. Asia-Pac. J. Atmos. Sci., 46, 467-474. https://doi.org/10.1007/s13143-010-0027-y
  118. Kug, J.-S., S.-I. An, F.-F. Jin, and I.-S. Kang, 2005: Preconditions for El Nino and La Nina onsets and their relation to Indian Ocean. Geophys. Res. Lett., 32, doi:10.1029/2004GL021674.
  119. Kug, J.-S., S.-I. An, Y.-G. Ham, and I.-S. Kang, 2010c: Changes in El Nino and La Nina teleconnections over North Pacific-America in the global warming simulation. Theor. Appl. Climatol., 100, 275-282, doi: 10.1007/s00704-009-0183-0.
  120. Kug, J.-S., J. Choi, S.-I. An, F.-F. Jin, and A.-T. Wittenberg, 2010a: Warm pool and cold tongue El Nino events as simulated by the GFDL2.1 coupled GCM. J. Climate, 23, doi: 10.1175/2009JCLI3293.1.
  121. Kug, J.-S., and Y.-G. Ham, 2011: Are there two types of La Nina events? Geophy. Res. Lett., 38, doi: 10.1029/2011GL048237.
  122. Kug, J.-S., and Y.-G. Ham, 2012: Indian Ocean feedback to the ENSO transition in a multimodel ensemble. J.Climate, 25, 6942-6957, doi: 10.1175/JCLI-D-12-00078.1.
  123. Kug, J.-S., Y.-G. Ham, E.-J. Lee, and I.-S. Kang, 2011: Empirical singular vector method for ensemble El NinoSouthern Oscillation prediction with a coupled general circulation model. J. Geophys. Res., 116, doi:10.1029/2010JC006851.
  124. Kug, J.-S., J.-H. Jeong, Y.-S. Jang, B.-M. Kim, C. K. Folland, S.-K. Min, and S.-W. Son, 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759-762, doi:10.1038/ngeo2517.
  125. Kug, J.-S., F.-F. Jin, and S.-I. An, 2009b: Two types of El Nino events: cold tongue El Nino and warm pool El Nino. J. Climate, 22, 1499-1515. https://doi.org/10.1175/2008JCLI2624.1
  126. Kug, J.-S., F.-F. Jin, K. P. Sooraj, and I.-S. Kang, 2008: State-dependent atmospheric noise associated with ENSO. Geophy. Res. Lett., 35, L05701, doi: 10.1029/2007GL032017.
  127. Kug, J.-S., and I.-S. Kang, 2006: Interactive feedback between the Indian Ocean and ENSO. J. Climate, 19, 1784-1801. https://doi.org/10.1175/JCLI3660.1
  128. Kug, J.-S., I.-S. Kang, and S.-I. An, 2003: Symmetric and antisymmetric mass exchanges between the equatorial and off-equatorial Pacific associated with ENSO. J. Geophy. Res-Oceans., 108, 3284, doi: 10.1029/2002JC001671.
  129. Kug, J.-S., I.-S. Kang, and S. E. Zebiak, 2001: Impact of the model assimilated wind stress data in the initialization of an intermediate ocean model and the ENSO predictability. Geophys. Res. Lett., 28, 3713-3716, doi: 10.1029/2000GL012793.
  130. Kug, J.-S., B. P. Kirtman, and I.-S. Kang, 2006b: Interactive feedback between the Indian Ocean and ENSO in an interactive coupled model. J. Climate, 19, 6371-6381. https://doi.org/10.1175/JCLI3980.1
  131. Kug, J.-S., T. Li, S.-I. An, I.-S. Kang, J.-J. Luo, S. Masson, and T. Yamagata, 2006a: Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33, doi: 10.1029/2005GL024916.
  132. Kug, J.-S., K.-P. Sooraj, D. Kim, F.-F. Jin, I.-S. Kang, Y. Takayabu, and M. Kimoto, 2009a: Simulation of state-dependent high-frequency atmospheric noise associated with ENSO in climate models. Clim. Dyn., 32, 635-648, doi: 10.1007/s00382-008-0434-2.
  133. Kug, J.-S., K.-P. Sooraj, T. Li, and F.-F. Jin, 2010d: Precursors of El Nino/La Nina onset and their interrelationship. J. Geophy. Res., 115, doi: 10.1029/2009JD012861.
  134. Kwon, H., H. Choi, B.-M. Kim, S.-W. Kim, and S.-J. Kim, 2020: Recent weakening of the southern stratospheric polar vortex and its impact on the surface climate over Antarctica. Environ. Res. Lett., 15, 3-9, doi: 10.1038/ngeo2517.
  135. Kwon, H., S. Kim, S. Kim, and S. Kim, 2021: Topographical effect of the Antarctic Peninsula on a strong wind event. Antarct. Sci., 33, 674-684, doi: 10.1017/S0954102021000444.
  136. Kwon, H., S.-W. Kim, S. Lee, S.-J. Park, T. Choi, J.-H. Jeong, S.-J. Kim, and B.-M. Kim, 2016: A numerical simulation study of strong wind events at Jangbogo Station, Antarctica. Atmosphere, 26, 617-633, doi:10.14191/ATMOS.2016.26.4.617.
  137. Kwon, H., S.-J. Park, S. Lee, S.-J. Kim, and B.-M. Kim, 2016: A numerical simulation of blizzard caused by polar low at King Sejong Station, Antarctica. Atmosphere, 26, 277-288, doi: 10.14191/ATMOS.2016.26.2.277.
  138. Kwon, M.-H., and J. Jhun, 2003a: Interannual variability of summer precipitation over East Asia associated with intraseasonal variability in the northwestern Pacific. Atmosphere, 13, 230-231, doi: 10.1029/2021JD034607.
  139. Kwon, M.-H., and J. Jhun, 2003b: Impacts of intraseasonal variability in the northwestern Pacific on Interannual variability of summer precipitation over East Asia. Atmosphere, 13, 350-353.
  140. Kwon, S.-H., K.-O. Boo, S. Shim, and Y.-H. Byun, 2017: Evaluation of the East Asian summer monsoon season simulated in CMIP5 models and the future change. Atmosphere, 27, 133-150, doi: 10.14191/Atmos.2017.27.2.133.
  141. Lee, B.-Y., H.-K. Cho, J. Kim, Y.-J. Jung, and Y.-G. Lee, 2006: Recent changes in solar irradiance, air temperature and cloudiness at King Sejong Station, Antarctica. Atmosphere, 16, 333-342.
  142. Lee, C., K.-O. Boo, J. Hong, H. Seong, K.-H. Seol, J. Lee, and C. Cho, 2014: Future changes in global terrestrial carbon cycle under RCP scenarios. Atmosphere, 24, 303-315, doi: 10.14191/Atmos.2014.24.3.303.
  143. Lee, D.-K., 1991: Characteristics of East Asian summer monsoon circulation associated with rainfalls over the Korean Peninsula in 1985. J. Korean Meteor. Soc., 27, 205-219.
  144. Lee, D.-K., and Y.-A. Kim, 1992: Variability of East Asian summer monsoon during the period of 1980~1989. J. Korean Meteor. Soc., 28, 315-331.
  145. Lee, H.-J., K.-H. Seo, Q. Wu, S.-S. Lee, and H.-S. Park, 2019: Combined effect of the Madden-Julian Oscillation and Arctic Oscillation on cold temperature over Asia. Asia-Pac. J. Atmos. Sci., 55, 75-89, doi: 10.1007/s13143-018-0091-2.
  146. Lee, J.-W., S.-W. Son, S.-Y. Kim, and K. Song, 2021: The sensitivity of the extratropical jet to the stratospheric mean state in a dynamic-core general circulation mode. Atmosphere, 31, 171-183, doi: 10.14191/Atmos.2021.31.2.171.
  147. Lee, J.-W., S.-W. Yeh, and H.-S. Jo, 2016: Weather noise leading to El Nino diversity in an ocean general circulation model. Clim. Dyn., 52, 7235-7247, doi:10.1007/s00382-016-3438-3.
  148. Lee, J.-Y., 2015: Interdecadal changes in the boreal summer tropical-extratropical teleconnections occurred around mid-to-late 1990s. Atmosphere, 28, 325-336, doi: 10.14191/Atmos.2018.28.3.325.
  149. Lee, J.-Y., 2018: Interdecadal changes in the boreal tropicalextratropical teleconnections occurred around mid-to-late 1990s. Atmosphere, 28, 325-336, doi: 10.14191/Atmos.2018.28.3.325.
  150. Lee, J.-Y., and K.-J. Ha, 2015: Understanding of interdecadal changes in variability and predictability of the Northern Hemisphere summer tropical-extratropical teleconnection. J. Climate, 28, 8634-8647, doi:10.1175/JCLI-D-15-0154.1.
  151. Lee, J.-Y., M.-H. Cho, Y. Koh, B.-M. Kim, and J.-H. Jeong, 2018: Projection of circum-Arctic features under climate change. Atmosphere, 28, 393-402, doi: 10.14191/Atmos.2018.28.4.393.
  152. Lee, J.-Y., B. Wang, K.-H. Seo, K.-J. Ha, A. Kitoh, and J. Liu, 2015: Effects of mountain uplift on global monsoon precipitation. Asia-Pac. J. Atmos. Sci., 51, 275-290, doi: 10.1007/s13143-015-0077-2.
  153. Lee, M.-I., 2001: Influence of cloud-radiation interaction in AGCM simulations of tropical intraseasonal oscillation. Atmosphere, 11, 13-16. https://doi.org/10.1029/2001JD900143
  154. Lee, M.-I., and I.-S. Kang, 2001: Impacts of cumulus parameterization in AGCM simulation s of tropical ISO. Atmosphere, 11, 389-392. https://doi.org/10.3390/atmos11040389
  155. Lee, S., 2014: A theory for polar amplification from a general circulation perspective. Asia-Pac. J. Atmos. Sci., 50, 31-43, doi: 10.1007/s13143-014-0024-7.
  156. Lee, S.-H., and K.-H. Seo, 2011: A multi-scale analysis of the interdecadal change in the Madden-Julian Oscillation. Atmosphere, 21, 143-149, doi: 10.14191/Atmos.2011.21.2.143.
  157. Lee, S. K., H. Lopez, E. S. Chung, P. DiNezio, S. W. Yeh, and A. T. Wittenberg, 2018: On the fragile relationship between El Nino and California rainfall. Geophys. Res. Lett., 45, 907-915, doi: 10.1002/2017GL076197.
  158. Lee, T.-Y., and Y.-H. Kim, 2007: Heavy precipitation systems over the Korean Peninsula and their classification. J. Korean Meteor. Soc., 43, 367-396.
  159. Lee, Y. K., S. W. Yeh, B. Dewitte, B. K. Moon, and J. G. Jhun, 2012: The influences of interannual stratification variability and wind stress forcing on ENSO before and after the 1976 climate shift. Theor. Appl. Climatol., 107, 623-631, doi: 10.1007/s00704-011-0514-9.
  160. Lim, J.-H., and H.-R. Byun, 2000: Characteristics of the development of the Okhotsk High and Its relation to the atmospheric circulation over East Asia. J. Korean Meteor. Soc., 36, 507-518.
  161. Madden, R. A., and P. R. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702-708, doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.
  162. Madden, R. A., and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 1109-1123, doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.
  163. Mansouri, S., M. Masnadi-Shirazi, S. Golbahar-Haghighi, and M. J. Nazemosadat, 2021: An analogy toward the real-time multivariate MJO index to improve the estimation of the impacts of the MJO on the precipitation variability over Iran in the boreal cold months. Asia-Pac. J. Atmos. Sci., 57, 207-222, doi: 10.1007/s13143-020-00188-0.
  164. Min, H.-J., and J.-G. Jhun, 2010: The Change in the East Asian summer monsoon simulated by the MIROC3.2 high-resolution coupled model under global warming scenarios. Asia-Pac. J. Atmos. Sci., 46, 73-88, doi:10.1007/s13143-010-0008-1.
  165. Min, S. K., and Coauthros, 2015: Changes in weather and climate extremes over Korea and possible causes: a review. Asia-Pac. J. Atmos. Sci., 51, 103-121, doi:10.1007/s13143-015-0066-5.
  166. Min, S. K., X. Zhang, F. W. Zwiers, and G. C. Hegerl, 2011: Human contribution to more-intense precipitation extremes. Nature, 470, 378-381, doi: 10.1038/nature09763.
  167. Moon, J.-Y., and K.-J. Ha, 2002: Coherent life cycle of intraseasonal tropical convection and extratropical circulation during El Nino and La Nina years: Diagnostic study. Asia-Pac. J. Atmos. Sci., 38, 547-563.
  168. Moon, J.-Y., and K.-J. Ha, 2003: The coherent life cycle of intraseasonal tropical and extratropical circulation during ENSO. Atmosphere, 13, 396-397.
  169. Moon, J.-Y., B. Wang, and K.-J. Ha, 2005: Coherent life cycle of intraseasonal tropical convection and extratropical circulation during El Nino and La Nina years. AsiaPac. J. Atmos. Sci., 41, 201-216.
  170. Moon, S., 1981: A classification of flow patterns of summer monsoon at 850mb level in east Asia. Asia-Pac. J. Atmos. Sci., 17, 22-27, doi: 10.1007/s13143-017-0024-5.
  171. Moon, S., and K.-J. Ha, 2017: Temperature and precipitation in the context of the annual cycle over Asia: model evaluation and future change. Asia-Pac. J. Atmos. Sci., 53, 229-242, doi: 10.1007/s13143-017-0024-5.
  172. Moon, W., B.-M. Kim, G.-H. Yang, and J. S. Wettlaufer, 2022: Wavier jet streams driven by zonally asymmetric surface thermal forcing. P. Natl. Acad. Sci., 119, doi: 10.1073/pnas.2200890119.
  173. Nicolas, J. P., and D. H. Bromwich, 2014: New reconstruction of Antarctic near-surface temperatures: multidecadal trends and reliability of global reanalysis. J. Climate, 27, 8070-8093, doi: 10.1175/JCLI-D-13-00733.1.
  174. Nitta, T., 1987: Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J. Meteorol. Soc. Jpn., 65, 373-390, doi: 10.2151/jmsj1965.65.3_373.
  175. Oh, J.-H., 1996: Study of the Asian summer monsoon for the El Nino event of 1987 and the La Nina event of 1988 with the METRI/YONU GCM. J. Korean Meteor. Soc., 32, 111-129.
  176. Oh, J.-H., S. Woo, and S.-I. Yang, 2017: Ship accessibility predictions for the Arctic Ocean based on IPCC CO2 emission scenarios. Asia-Pac. J. Atmos. Sci., 53, 43-50, doi: 10.1007/s13143-017-0003-x.
  177. Olson, R., S.-I. An, Y. Fan, W. Chang, J. P. Evans, and J.-Y. Lee. 2019: A novel method to test non-exclusive hypotheses applied to Arctic ice projections from dependent models. Nat. Commun., 10, 3016, doi:10.1038/s41467-019-10561-x.
  178. Overland, J. E., K. R. Wood, and M. Wang, 2011: Warm Arctic-cold continents: climate impacts of the newly open Arctic Sea. Polar. Res., 30, 15787, doi: 10.3402/polar.v30i0.15787.
  179. Park, D.-S., S. Lee, and S. B. Feldstein, 2015a: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 4027-4033, doi: 10.1175/JCLI-D-15-0042.1.
  180. Park, H., S. Lee, S.-W. Son, S. B. Feldstein, and Y. Kosaka, 2015b: The impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate, 28, 5030-5040, doi: 10.1175/JCLI-D-15-0074.1.
  181. Park, J.-H., S.-I. An, J.-S. Kug, Y.-M. Yang, T. Li, and H.-S. Jo, 2020: Mid-latitude leading double-dip La Nina. J. Int. Climatol., 41, E1353-E1370, doi: 10.1002/joc.6772.
  182. Park, J.-H., J.-S. Kug, T. Li, and S.-K. Behera, 2018: Predicting El Nino beyond 1-year lead: effect of the western hemisphere warm pool. Sci. Rep., 8, 14957, doi:10.1038/s41598-018-33191-7.
  183. Park, J.-H., M.-K. Sung, Y.-M. Yang, J. Zhao, S.-I. An, and J.-S. Kug, 2021: Role of climatological intertropical convergence zone in seasonal footprinting mechanism of El Nino-Southern Oscillation. J. Climate, 34, 5243-5256, doi: 10.1175/JCLI-D-20-0809.1.
  184. Park, J., H.-S. Kang, Y.-K. Hyun, and T. Nakazawa, 2018: Predictability of the Arctic Sea ice extent from S2S multi model ensemble. Atmosphere, 28, 15-24, doi:10.14191/ATMOS.2018.28.1.015.
  185. Park, S.-J., T.-J. Choi, and S.-J. Kim, 2013: Heat flux variations over sea ice observed at the coastal area of the Sejong Station, Antarctica. Asia-Pac. J. Atmos. Sci., 49, 443-450, doi: 10.1007/s13143-013-0040-z.
  186. Park, S.-U., H.-J. Ahn, and Y.-S. Chun, 1988: Evolutionary features of the large-scale circulation over East Asia during the Changma period of 1985. J. Korean Meteor. Soc., 24, 22-43.
  187. Park, S.-U., I.-H. Yoon, and S. K. Chung, 1986: Heat and moisture sources associated with the Chan gma fron t during the summer of 1978. J. Korean Meteor. Soc., 22, 1-27.
  188. Park, J. Y., S. W. Yeh, J. S. Kug, and J. Yoon, 2013: Favorable connections between seasonal footprinting mechanism and El Nino. Clim. Dyn., 40, 1167-1181, doi: 10.1007/s00382-012-1477-y.
  189. Pena-Ortiz, C., D. Gallego, P. Ribera, P. Ordonez, and M. D. C. Alvarez-Castro, 2013: Observed trends in the global jet stream characteristics during the second half of the 20th century. J. Geophys. Res-Atmos., 118, 2702-2713, doi: 10.1002/jgrd.50305.
  190. Previdi, M., K. L. Smith, and L. M. Polvani, 2021: Arctic amplification of climate change: a review of underlying mechanisms. Environ. Res. Lett., 16, 093003, doi: 10.1088/1748-9326/ac1c29.
  191. Rantanen, M., A. Y. Karpechko, A. Lipponen, K. Nordling, O. Hyvarinen, K. Ruosteenoja, T. Vihma, and A. Laaksonen, 2022: The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth. Environ3., 168, doi: 10.1038/s43247-022-00498-3.
  192. Raphael, M. N., and M. S. Handcock, 2022: A new record minimum for Antarctic Sea ice. Nat. Rev. Earth. Environ3., 3, 215-216, doi: 10.1038/s43017-022-00281-0.
  193. Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647-651, doi: 10.1038/s41586-019-1764-4.
  194. Seo, K.-H., 2004: Prediction Skill of the Tropical Intraseasonal Oscillation in the NCEP Dynamical Extended Range Forecasts. Asia-Pac. J. Atmos. Sci., 40, 649-663.
  195. Seo, K.-H., and J.-H. Choi, 2022: An economic value for the first precipitation event during Changma period. Atmosphere, 32, 61-70, doi: 10.14191/Atmos.2022.32.1.061.
  196. Seo, K.-H., J. Ok, J.-H. Son, and D.-H. Cha, 2013: Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J. Climate, 26, 7662-7675, doi: 10.1175/JCLI-D-12-00694.1.
  197. Seo, K.-H., J.-H. Son, and J.-Y. Lee, 2011: A new look at Changma. Atmosphere, 21, 109-121, doi: 10.14191/Atmos.2011.21.1.109.
  198. Serreze, M. C., and R. G. Barry, 2011: Processes and impacts of Arctic amplification: a research synthesis. Global. Planet. Change, 77, 85-96, doi: 10.1016/j.gloplacha.2011.03.004.
  199. Shim, S., S.-H. Kwon, Y.-J. Lim, S. S. Yum, and Y.-H. Byun, 2019: Understanding climate change over East Asia under stabilized 1.5 and 2.0℃ global warming scenarios. Atmosphere, 29, 391-401, doi: 10.14191/Atmos.2019.29.4.391.
  200. Shin, I. C., H.-I. Yi, W.-T. Kwon, and H.-S. Chung, 2005: Current climate change in the view of paleoclimatology. Asia-Pac. J. Atmos. Sci., 41, 229-237.
  201. Shin, N.-Y., Y.-G. Ham, J.-H. Kim, M.-S. Cho, and J.-S. Kug, 2022: Application of deep learning to understanding ENSO dynamics. Artif. Intell. Earth. Syst., 1, doi: 10.1175/AIES-D-21-0011.1.
  202. Shin, N.-Y., J.-S. Kug, F. S. McCormack, and N. J. Holbrook, 2021: The double peaked El Nino and its physical processes. J. Climate, 34, 1291-1303, doi: 10.1175/JCLI-D-20-0402.1.
  203. Singh, N., S.-K. Baek, and W.-T. Kwon, 2002: Seasonal/subseasonal rainfall prediction through time series modelling and extrapolation using harmonic analysis. Korean J. Atmos. Sci., 5, 131-145.
  204. So, E.-M., and M.-S. Suh, 2017: Trends of upper jet streams characteristics (intensity, altitude, latitude and longitude) over the Asia-North Pacific region based on four reanalysis datasets. Atmosphere, 27, 1-16, doi: 10.14191/Atmos.2017.27.1.001.
  205. Sohn, B.-J., and J.-W. Han, 1995: Some climatological features associated with extremes of East Asian summer monsoon. J. Korean Meteor. Soc., 31, 477-488.
  206. Son, H.-Y., J.-Y. Park, and J.-S. Kug, 2016: Precipitation variability in September over the Korean Peninsula during ENSO developing phase. Clim. Dyn., 46, 3419-3430, doi: 10.1007/s00382-015-2776-x.
  207. Son, H.-Y., J.-Y. Park, J.-S. Kug, J. Yoo, and C.-H. Kim, 2014: Winter Precipitation variation over Korean Peninsula associated with ENSO. Clim. Dyn., 42, 3171-3186, doi: 10.1007/s00382-013-2008-1.
  208. Son, J.-H., and K.-H. Seo, 2012: Dominant modes of the East Asian summer monsoon using equivalent potential temperature. Atmosphere, 22, 483-488, doi: 10.14191/Atmos.2012.22.4.483.
  209. Son, J.-H., K.-H. Seo, and B. Wang, 2019: Dynamical control of the Tibetan Plateau on the East Asian summer monsoon. Geophys. Res. Lett., 46, 7672-7679, doi: 10.1029/2019GL083104.
  210. Song, E.-J., and K.-H. Seo, 2012: ?Vertical vorticity structure associated with the boreal summer intraseasonal oscillation: barotropic or baroclinic? Atmosphere, 22, 259-265, doi: 10.14191/Atmos.2012.22.2.259.
  211. Song, E.-J., E. Choi, G. H. Lim, Y. H. Kim, J. S. Kug, and S. W. Yeh, 2011: The central Pacific as the export region of the El Nino-Southern Oscillation Sea surface temperature anomaly to Antarctic Sea ice. J. Geophys. Res-Atmos., 116, doi: 10.1029/2011JD015645.
  212. Song, K., H. Kim, S.-W. Son, S.-W. Kim, H.-S. Kang, and Y.-K. Hyun, 2018: Subseasonal-to-Seasonal (S2S) prediction of GloSea5 model: part 2. stratospheric sudden warming. Atmosphere, 28, 123-139, doi: 10.14191/ATMOS.2018.28.2.123.
  213. Song, K., S.-W. Son, and S.-H. Woo, 2015: Impact of sudden stratospheric warming on the surface air temperature in East Asia. Atmosphere, 25, 461-472, doi:10.14191/ATMOS.2015.25.3.461.
  214. Song, S.-Y., S.-W. Yeh, and H.-S. Jo, 2021: Changes in the characteristics of North Pacific Jet as a Conduit for US surface air temperature in boreal winter across the late 1990s. J. Climate, 34, 6841-6853, doi: 10.1175/JCLI-D-20-0353.1.
  215. Sooraj, K. P., D. Kim, J.-S. Kug, S.-W. Yeh, F.-F. Jin, and I.-S. Kang, 2009a: Effects of the low frequency zonal wind variation on the high-frequency atmospheric variability over the tropics. Clim. Dyn., 33, 495-507, doi: 10.1007/s00382-008-0483-6.
  216. Sooraj, K. P., J.-S. Kug, T. Li, and I.-S. Kang, 2009b: Impact of El Nino onset timing on the Indian Ocean - Pacific coupling and subsequent El Nino evolution. Theor. Appl. Climatol, 97, 17-27, doi: 10.1007/s00704-008-0067-8.
  217. Su, J., R. Zhang, T. Li, X. Rong, J.-S. Kug, and C.-C. Hong, 2010: Causes of the El Nino and La Nina amplitude asymmetry in the equatorial eastern Pacific. J. Climate, 23, 605-617, doi: 10.1175/2009JCLI2894.1.
  218. Suh, M.-S., J.-R. Lee, J.-H. Kang, D.-K. Lee, and M.-H. Ahn, 2005: On the relationship between seasonal change of vegetation and climate elements in east Asia. Asia-Pac. J. Atmos. Sci., 41, 557-570.
  219. Sun, M., C.-H. Cho, Y. Kim, J. Lee, K.-O. Boo, and Y.-H. Byun, 2017: Response of the terrestrial carbon exchange to the climate variability. Atmosphere, 27, 163-175. https://doi.org/10.14191/Atmos.2017.27.2.163
  220. Sung, M.-K., S.-I. An, B.-M. Kim, and J.-S. Kug, 2015: Asymmetric impact of Atlantic Multidecadal Oscillation on El Nino and La Nina characteristics. Geophys. Res. Lett., 42, 4998-5004, doi: 10.1002/2015GL064381.
  221. Wang, B., and S.-I. An, 2001: Why the Properties of El Nino changed During the Late 1970s. Geophys. Res. Lett., 28, 3421-3432. https://doi.org/10.1029/2001GL013368
  222. Wang, B., and S.-I. An, 2002: A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim. Dyn., 18, 475-486. https://doi.org/10.1007/s00382-001-0189-5
  223. Wang, B., J. Liu, H.-J. Kim, P. J. Webster, S.-Y. Yim, and B. Xiang, 2013b: Northern Hemisphere summer monsoon intensified by mega-El Nino/Southern Oscillation and Atlantic multidecadal oscillation. Proc. Natl. Acad. Sci. U.S.A., 110, 4347-5352, doi: 10.1073/pnas.1219405110.
  224. Wang, B., and X. Xie, 1997: A model for the boreal summer intraseasonal oscillation. J. Atmos. Sci., 54, 72-86. https://doi.org/10.1175/1520-0469(1997)054<0072:AMFTBS>2.0.CO;2
  225. Wang, H., B. Wang, F. Huang, Q. Ding, and J.-Y. Lee, 2012: Interdecadal change of the boreal summer circumglobal teleconnection (1958~2010). Geophys. Res. Lett., 39, doi: 10.1029/2012GL052371.
  226. Watanabe, M., J.-S. Kug, F.-F. Jin, M. Collins, M. Ohba, and A. Wittenburg, 2012: Uncertainty in the ENSO amplitude change from the past to the future. Geophys. Res. Lett., 39, doi: 10.1029/2012GL053305.
  227. Wie, J., B.-K. Moon, S.-W. Yeh, R. J. Park, and B.-G. Kim, 2021: La Nina-related tropospheric column ozone enhancement over East Asia. Atmos. Environ., 261, doi: 10.1016/j.atmosenv.2021.118575.
  228. Won, Y.-J., S.-W. Yeh, B.-Y. Yim, and H.-K. Kim, 2017: Relationship between Korean monthly temperature during summer and Eurasian snow cover during spring. Atmosphere, 27, 55-65, doi: 10.14191/Atmos.2017.27.1.055.
  229. Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res-Atmos., 116, doi: 10.1029/2011JD015779.
  230. Yeh, S.-W., and Coauthors, 2018: ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev. Geophys., 56, 185-206, doi: 10.1002/2017RG000568.
  231. Yeh, S.-W., B. P. Kirtman, J. S. Kug, W. Park, and M, Latif, 2011: Natural variability of the central Pacific El Nino event on multi-centennial timescales. Geophys. Res. Lett., 38, doi: 10.1029/2010GL045886.
  232. Yeh, S.-W., H.-S. Jo, S.-H. Hyun, W. Cai, and Y.-G. Ham, 2021: Role of the eastern subtropical North Pacific Ocean on the El Nino's transition processes. Clim. Dyn., 56, 1285-1301, doi: 10.1007/s00382-020-05530-w.
  233. Yeh, S.-W., Y. G. Ham, and B. P. Kirtman, 2014b: A possible explanation on the changes in the spatial structure of ENSO from CMIP3 to CMIP5. Geophys. Res. Lett., 41, 140-145, doi: 10.1002/2013GL058478.
  234. Yeh, S.-W., H. Kim, M. Kwon, and B. Dewitte, 2014c: Changes in the spatial structure of strong and moderate El Nino events under global warming. Int. J. Climatol., 34, 2834-2840, doi: 10.1002/joc.3876.
  235. Yeh, S.-W., J.-S. Kug, and S.-I. An, 2014a: Recent progress on two types of El Nino: observations, dynamics, and future changes. Asia-Pac. J. Atmos. Sci., 50, 69-81, doi: 10.1007/s13143-014-0028-3.
  236. Yeh, S.-W.,J.-S. Kug, B. Dewitte, M.-H. Kwon, B. Kirtman, and F.-F. Jin, 2009: El Nino in a changing climate. Nature, 461, 511-514. https://doi.org/10.1038/nature08316
  237. Yeh, S. W., X. Wang, C. Wang, and B. Dewitte, 2015: On the relationship between the North Pacific climate variability and the Central Pacific El Nino. J. Climate., 28, 663-677, doi: 10.1175/JCLI-D-14-00137.1.
  238. Yeo, S.-R., J.-G. Jhun, and W. Kim, 2012: Intraseasonal variability of western North Pacific subtropical high based on the El Nino Influence and its relationship with East Asian summer monsoon. Asia-Pac. J. Atmos. Sci., 48, 43-53, doi: 10.1007/s13143-012-0005-7.
  239. Yeo, S.-R., S.-W. Yeh, Y. Kim, and S.-Y. Yim, 2017b: Monthly climate variation over Korea in relation to the two types of ENSO evolution. Int. J. Climatol., 38, 811-824, doi: 10.1002/joc.5212.
  240. Yeo, S.-R., S.-W. Yeh, K.-Y. Kim, and W. Kim, 2017a: The role of low-frequency variation in the manifestation of warming trend and ENSO amplitude. Clim. Dyn., 49, 1197-1213, doi: 10.1007/s00382-016-3376-0.
  241. Yi, H.-I., and I. C. Shin, 2010: Impact of climate change on the ocean environment in the viewpoint of paleoclimatology. Atmosphere, 20, 379-386.
  242. Yim, S.-Y., J.-G. Jhun, and E.-J. Lee, 2006: The comparison of characteristics between 1982/83 and 1997/98 El Nino events in terms of the East Asian summer monsoon. J. Korean Meteor. Soc., 42, 329-338.
  243. Yoon, J., S.-W. Kim, Y.-H. Kug, J.-S. Min, and H. Min, 2012: Understanding the responses of sea surface temperature to the two different types of El Nino in the Western North Pacific. Prog. Oceanogr., 105, 81-89, doi: 10.1016/j.pocean.2012.04.007.
  244. Yoon, J., and S. W. Yeh, 2010: Influence of the Pacific Decadal Oscillation on the relationship between El Nino and the northeast Asian summer monsoon. J. Climate, 23, 4525-4537, doi: 10.1175/2010JCLI3352.1.
  245. Yu, J.-Y., P.-K. Kao, H. Paek, H.-H. Hsu, C.-W. Hung, M.-M. Lu, and S.-I. An, 2015: Linking emergence of the Central-Pacific El Nino to the Atlantic multidecadal oscillation. J. Climate., 28, 651-662, doi: 10.1175/JCLI-D-14-00347.1.
  246. Yun, K. S., K. J. Ha, S. W. Yeh, B. Wang, and B. Xiang, 2015: Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Clim. Dyn., 44, 1979-1992, doi: 10.1007/s00382-014-2193-6.
  247. Yun, K. S., S. W. Yeh, and K.-J. Ha, 2019: Underlying mechanisms leading to El Nino-to-La Nina transition are unchanged under global warming. Clim. Dyn., 52, 1723-1738, doi: 10.1007/s00382-018-4220-5.
  248. Yun, W.-T., C.-K. Park, J.-W. Lee, H.-S. Lee, and S.-K. Min, 2001: Analysis of the Korean heavy rainfall features in summer 1998. J. Korean Meteor. Soc., 37, 181-194.
  249. Zhang, W., F.-F. Jin, M. F. Stuecker, T. Wittenberg, A. Timmermann, H.-L. Ren, J.-S, Kug, W. Cai, and M. Cane, 2016: Unraveling El Nino's impact on the East Asian monsoon and Yangtze River summer flooding. Geophys. Res. Lett., 43, 11375-11382, doi: 10.1002/2016GL071190.
  250. Zhao, J., J.-S. Kug, J.-H. Park, and S.-I. An, 2020: Diversity of North Pacific Meridional Mode and its distinct impacts on El Nino-Southern Oscillation. Geophys. Res. Lett., 47, doi: 10.1029/2020GL08899.
  251. Zuo, J., W. Li, C. Sun, L. Xu, and H.-L. Ren, 2013: Impact of the North Atlantic Sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173-1186, doi: 10.1007/s00376-012-2125-5.