• Title/Summary/Keyword: Biopharmaceuticals

Search Result 57, Processing Time 0.021 seconds

Cytotoxic activity and probable apoptotic effect of Sph2, a sphigomyelinase hemolysin from Leptospira interrogans strain Lai

  • Zhang, Yi-xuan;Geng, Yan;Yang, Jun-wei;Guo, Xiao-kui;Zhao, Guo-ping
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • Our previous work confirmed that Sph2/LA1029 was a sphigomyelinase-like hemolyisn of Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai. Characteristics of both hemolytic and cytotoxic activities of Sph2 were reported in this paper. Sph2 was a heat-labile neutral hemolysin and had similar hemolytic behavior as the typical sphingomyelinase C of Staphylococcus aureus upon sheep erythrocytes. The cytotoxic activity of Sph2 was shown in mammalian cells such as BALB/C mouse lymphocytes and macrophages, as well as human L-02 liver cells. Transmission electron microscopic observation showed that the Sph2 treated BALB/C mouse lymphocytes were swollen and ruptured with membrane breakage. They also demonstrated condensed chromatin as a high-density area. Cytoskeleton changes were observed via fluorescence confocal microscope in Sph2 treated BALB/C mouse lymphocytes and macrophages, where both cytokine IL-$1{\beta}$ and IL-6 were induced. In addition, typical apoptotic morphological features were observed in Sph2 treated L-02 cells via transmission electron microscope and the percentage of apoptotic cells did increase after the Sph2 treatment detected by flow cytometry. Therefore, Sph2 was likely an apoptosis-inducing factor of human L-02 liver cells.

Membrane and Virus Filter Trends in the Processes of Biopharmaceutical Production (바이오의약품 제조공정에서 분리막의 역할과 바이러스 필터 동향)

  • Choi, Tae Hwan;Park, Ho Bum
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.9-20
    • /
    • 2020
  • Membranes are used in most processes of biopharmaceutical production. It is used for pretreatment of other processes, separation of impurities in the process, virus removal, control of products concentration and buffer solution exchange. Virus filters play an important role in ensuring product efficacy and stability because viral contamination of biopharmaceuticals for humans is a sensitive issue that is directly related to serious clinical outcomes. Virus filters typically have complex multilayer structures made of various polymers such as surface-modified PVDF, PES, CRC. Depending on the manufacturer, filters have different pore structures and shapes, such as symmetric or asymmetric, and is used in the form of pleated membrane, flat sheets or hollow fibers. Virus filters are exclusively supplied by few foreign companies such as Asahi Kasei, Millipore, Pall and Sartorius. Replacing virus filters can be time consuming and expensive, including approval from regulatory agencies through validation. As localization has become important due to Japan's recent export regulations, it is necessary to increase the degree of technical independence.

Gallic acid-mitochondria targeting sequence-H3R9 induces mitochondria-targeted cytoprotection

  • Bae, Yoonhee;Kim, Goo-Young;Jessa, Flores;Ko, Kyung Soo;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.15-24
    • /
    • 2022
  • The development of selective targeting of drug molecules towards the mitochondria is an important issue related to therapy efficacy. In this study, we report that gallic acid (GA)-mitochondria targeting sequence (MTS)-H3R9 exhibits a dual role as a mitochondria-targeting vehicle with antioxidant activity for disease therapy. In viability assays, GA-MTS-H3R9 showed a better rescue action compared to that of MTS-H3R9. GA-MTS-H3R9 dramatically exhibited cell penetration and intercellular uptake compared to MTS and fit escape from lysosome release to the cytosol. We demonstrated the useful targeting of GA-MTS-H3R9 towards mitochondria in AC16 cells. Also, we observed that the antioxidant properties of mitochondrial-accrued GA-MTS-H3R9 alleviated cell damage by reactive oxygen species production and disrupted mitochondrial membrane potential. GA-MTS-H3R9 showed a very increased cytoprotective effect against anticancer activity compared to that of MTS-H3R9. We showed that GA-MTS-H3R9 can act as a vehicle for mitochondria-targeting and as a reagent for therapeutic applications intended for cardiovascular disease treatment.

Big Data News Analysis in Healthcare Using Topic Modeling and Time Series Regression Analysis (토픽모델링과 시계열 회귀분석을 활용한 헬스케어 분야의 뉴스 빅데이터 분석 연구)

  • Eun-Jung Kim;Suk-Gwon Chang;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.25 no.3
    • /
    • pp.163-177
    • /
    • 2023
  • This research aims to identify key initiatives and a policy approach to support the industrialization of the sector. The research collected a total of 91,873 news data points relating to healthcare between 2013 to 2022. A total of 20 topics were derived through topic modeling analysis, and as a result of time series regression analysis, 4 hot topics (Healthcare, Biopharmaceuticals, Corporate outlook·Sales, Government·Policy), 3 cold topics (Smart devices, Stocks·Investment, Urban development·Construction) derived a significant topic. The research findings will serve as an important data source for government institutions that are engaged in the formulation and implementation of Korea's policies.

Process development of a virally-safe dental xenograft material from porcine bones (바이러스 안전성이 보증된 돼지유래 골 이식재 제조 공정 개발)

  • Kim, Dong-Myong;Kang, Ho-Chang;Cha, Hyung-Joon;Bae, Jung Eun;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.140-147
    • /
    • 2016
  • A process for manufacturing virally-safe porcine bone hydroxyapatite (HA) has been developed to serve as advanced xenograft material for dental applications. Porcine bone pieces were defatted with successive treatments of 30% hydrogen peroxide and 80% ethyl alcohol. The defatted porcine bone pieces were heat-treated in an oxygen atmosphere box furnace at $1,300^{\circ}C$ to remove collagen and organic compounds. The bone pieces were ground with a grinder and then the bone powder was sterilized by gamma irradiation. Morphological characteristics such as SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images of the resulting porcine bone HA (THE Graft$^{(R)}$) were similar to those of a commercial bovine bone HA (Bio-Oss$^{(R)}$). In order to evaluate the efficacy of $1,300^{\circ}C$ heat treatment and gamma irradiation at a dose of 25 kGy for the inactivation of porcine viruses during the manufacture of porcine bone HA, a variety of experimental porcine viruses including transmissible gastroenteritis virus (TGEV), pseudorabies virus (PRV), porcine rotavirus (PRoV), and porcine parvovirus (PPV) were chosen. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the $1,300^{\circ}C$ heat treatment. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.81$$ for PRV, $${\geq_-}6.28$$ for PRoV, and $${\geq_-}5.21$$ for PPV. Gamma irradiation was also very effective at inactivating the viruses. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the gamma irradiation. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.87$$ for PRV, $${\geq_-}6.05$$ for PRoV, and $${\geq_-}4.89$$ for PPV. The cumulative log reduction factors achieved using the two different virus inactivation processes were $${\geq_-}9.30$$ for TGEV, $${\geq_-}11.68$$ for PRV, $${\geq_-}12.33$$ for PRoV, and $${\geq_-}10.10$$ for PPV. These results indicate that the manufacturing process for porcine bone HA from porcine-bone material has sufficient virus-reducing capacity to achieve a high margin of virus safety.

TaqMan probe real-time PCR for quantitative detection of bovine adenovirus type 1 during the manufacture of biologics and medical devices using bovine-derived raw materials (소유래 성분 원재료 사용 생물의약품과 의료기기 제조 공정에서 bovine adenovirus type 1 정량 검출을 위한 TaqMan probe real-time PCR)

  • Ko, Woon Young;Noh, Na Gyeong;Kim, In Seop
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.199-208
    • /
    • 2015
  • Biologics and medical devices manufactured with bovine-derived raw materials have the risk of viral contamination. Therefore, viral validation study is essential to ensure the safety of the products. Bovine adenovirus type-1 (BAdV-1) is one of the common bovine viral pathogens. For quantitative detection of BAdV-1 during the manufacture of biologics and medical devices, a TaqMan probe real-time PCR method was developed. Specific primers and TaqMan probe for amplifying and detecting BAdV-1 DNA were designed. Specificity, limit of detection (LOD), and robustness of the method was validated according to international guideline on the validation of nucleic acid amplification tests for the pathogen detection. The sensitivity of the assay was found to be $7.44{\times}10^1\;TCID_{50}/ml$. The real-time PCR method was reproducible, very specific to BAdV-1, and robust. Moreover, the method was successfully applied to the validation of Chinese Hamster Ovary (CHO)-K1 cells artificially infected with BAdV-1, a commercial CHO master bank, and bovine type 1 collagen. The overall results indicate that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BAdV-1 contamination during the manufacture of biologics and medical devices using bovine-derived raw materials.

Real-Time PCR for Quantitative Detection of Bovine Parvovirus during Manufacture of Biologics (생물의약품 제조공정에서 Bovine Parvovirus 정량 검출을 위한 Real-Time PCR)

  • Lee, Dong-Hyuck;Lee, Jung-Hee;Kim, Chan-Kyong;Kim, Tae-Eun;Bae, Jung-Eun;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.3
    • /
    • pp.173-181
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue-engineered products, and cell therapy. Manufacturing processes for the biologics have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine parvovirus (BPV) is one of the common bovine pathogens and has widely been known as a possible contaminant of biologics. In order to establish the validation system for the BPV safety of biologics, a real-time PCR method was developed for quantitative detection of BPV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BPV DNA were selected, and BPV DNA was quantified by use of SYBR Green 1. The sensitivity of the assay was calculated to be $1.3{\times}10^{-1}\;TCID_{50}/mL$. The real-time PCR method was validated to be reproducible and very specific to BPV. The established real-time PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BPV. BPV DNA could be quantified in CHO cell as well as culture supernatant. Also the real-time PCR assay could detect $1.3{\times}10^0\;TCID_{50}/mL$ of BPV artificially contaminated in bovine collagen. The overall results indicated that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BPV contamination during manufacture of biologics.

Analysis of Liquiritigenin, an Aglycone of Liquiritin in Licorice by High Performance Liquid Chromatography (감초 중 리퀴리티게닌 분석법 개발 및 함량분석)

  • Lee, Jong-Hwa;Ze, Keum-Ryon;Kim, Do-Hoon;Park, Ju-Young;Shim, Young-Hoon;Kim, Jong-Hwan;Lim, Sook;Shin, Jin-Seon;Kim, In-Seon;Kim, Ji-Yeon;Seong, Sang-Hyun;Jang, Seung-Yeup;Kim, Dong-Seup;Seong, Rack-Seon
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • Licorice(Glycyrrhizae Radix et Rhizoma) is recorded as the root of Glycyrrhiza uralensis Fischer or Glycyrrhiza glabra Linne or Glycyrrhiza inflata Bat.(Leguminosae) in Korean Pharmacopoeia $9^{th}$ edition (KP9) and Chinese Pharmacopoeia 2005(CP2005), Glycyrrhiza uralensis Fischer or Glycyrrhiza glabra Linne in Japanese Pharmacopoeia 2005(JP2005). It is established the content standard of Glycyrrhizin 2.5 % and liquiritin 1% in KP9 and CP2005. But, according to the reports, all Licorice species were not sufficient for content standard of liquiritin 1.0% for licorice in KP9 and CP2005. It shows different content of liquiritin among G. uralensis, G. glabra and G. inflata. Also, it was reported liquiritin, liquiritin apioside are transformed into liquiritigenin by human internal flora. Therefore, we have studied for the pre-treatment condition and analytical method of liquiritigenin; It was good efficinet in 2M HCl reflux(1 hr) for hydrolysis and in methylene chloride for solvent fractionation. And 1% acetic acid in DW(A) and acetonitrile(B) with gradient condition as a mobile phase was most effective in HPLC analytical condition. According to these experimental methods, we have anlayzed content of liquiritigenin about 77 Licorice sample. In this research, it was also examined the content of liquiritin and liquiritigenin for Glycyrrhizae Radix related growing area. According to the results, we suggested the content standard of glycyrrhizin more than 2.5%, liquiritigenin more than 0.7%(after hydrolysis) of licorice.

Real-Time RT-PCR for Quantitative Detection of Bovine Viral Diarrhoea Virus during Manufacture of Biologics (생물의약품 제조공정에서 Bovine Viral Diarrhoea Virus 정량 검출을 위한 Real-Time RT-PCR)

  • Cho, Hang-Mee;Lee, Dong-Hyuck;Kim, Hyun-Mi;Kim, In-Seop
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Bovine blood, cell, tissue, and organ are used as raw materials for manufacturing biologics such as biopharmaceuticals, tissue engineered products, and cell therapy. Manufacturing processes for the biologics using bovine materials have the risk of viral contamination. Therefore viral validation is essential in ensuring the safety of the products. Bovine viral diarrhoea virus (BVDV) is the most common bovine pathogen and has widely been known as a contaminant of biologics. In order to establish the validation system for the BVDV safety of biologics, a real-time RT-PCR method was developed for quantitative detection of BVDV contamination in raw materials, manufacturing processes, and final products. Specific primers for amplification of BVDV RNA was selected, and BVDV RNA was quantified by use of SYBR Green I. The sensitivity of the assay was calculated to be 1 $TCID_{50}/mL$. The rent-time RT-PCR method was validated to be reproducible and very specific to BVDV. The established real-time RT-PCR assay was successfully applied to the validation of Chinese hamster ovary (CHO) cell artificially infected with BVDV. BVDV RNA could be quantified in CHO cell as well as culture supernatant. Also the real-time RT-PCR assay could detect $10TCID_{50}/mL$ of BVDV artificially contaminated in bovine collagen.

Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology

  • Kim, Yong Hyun;Park, Bu Soo;Bhatia, Shashi Kant;Seo, Hyung-Min;Jeon, Jong-Min;Kim, Hyun-Joong;Yi, Da-Hye;Lee, Ju-Hee;Choi, Kwon-Young;Park, Hyung-Yeon;Kim, Yun-Gon;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1319-1326
    • /
    • 2014
  • Rapamycin, produced by the soil bacterium Streptomyces hygroscopicus, has the ability to suppress the immune system and is used as an antifungal, anti-inflammatory, antitumor, and immunosuppressive agent. In an attempt to increase the productivity of rapamycin, mutagenesis of wild-type Streptomyces hygroscopicus was performed using ultraviolet radiation, and the medium composition was optimized using glycerol (which is one of the cheapest starting substrates) by applying Plackett-Burman design and response surface methodology. Plackett-Burman design was used to analyze 14 medium constituents: M100 (maltodextrin), glycerol, soybean meal, soytone, yeast extract, $(NH_4)_2SO_4$, $\small{L}$-lysine, $KH_2PO_4$, $K_2HPO_4$, NaCl, $FeSO_4{cdot}7H_2O$, $CaCO_3$, 2-(N-morpholino) ethanesulfonic acid, and the initial pH level. Glycerol, soytone, yeast extract, and $CaCO_3$ were analyzed to evaluate their effect on rapamycin production. The individual and interaction effects of the four selected variables were determined by Box-Behnken design, suggesting $CaCO_3$, soytone, and yeast extract have negative effects, but glycerol was a positive factor to determine rapamycin productivity. Medium optimization using statistical design resulted in a 45% ($220.7{\pm}5.7mg/l$) increase in rapamycin production for the Streptomyces hygroscopicus mutant, compared with the unoptimized production medium ($151.9{\pm}22.6mg/l$), and nearly 588% compared with wild-type Streptomyces hygroscopicus ($37.5{\pm}2.8mg/l$). The change in pH showed that $CaCO_3$ is a critical and negative factor for rapamycin production.