DOI QR코드

DOI QR Code

TaqMan probe real-time PCR for quantitative detection of bovine adenovirus type 1 during the manufacture of biologics and medical devices using bovine-derived raw materials

소유래 성분 원재료 사용 생물의약품과 의료기기 제조 공정에서 bovine adenovirus type 1 정량 검출을 위한 TaqMan probe real-time PCR

  • Ko, Woon Young (Center for Biopharmaceuticals Safety Validation, BioPS Co., Ltd. Daedeuk Valley Campus, Hannam University) ;
  • Noh, Na Gyeong (Department of Biological Sciences and Biotechnology, Hannam University) ;
  • Kim, In Seop (Department of Biological Sciences and Biotechnology, Hannam University)
  • 고운영 ((주)바이오피에스 바이오의약품안전성검증센터) ;
  • 노나경 (한남대학교 생명.나노과학대학 생명시스템과학과) ;
  • 김인섭 (한남대학교 생명.나노과학대학 생명시스템과학과)
  • Received : 2015.08.19
  • Accepted : 2015.09.11
  • Published : 2015.09.30

Abstract

Biologics and medical devices manufactured with bovine-derived raw materials have the risk of viral contamination. Therefore, viral validation study is essential to ensure the safety of the products. Bovine adenovirus type-1 (BAdV-1) is one of the common bovine viral pathogens. For quantitative detection of BAdV-1 during the manufacture of biologics and medical devices, a TaqMan probe real-time PCR method was developed. Specific primers and TaqMan probe for amplifying and detecting BAdV-1 DNA were designed. Specificity, limit of detection (LOD), and robustness of the method was validated according to international guideline on the validation of nucleic acid amplification tests for the pathogen detection. The sensitivity of the assay was found to be $7.44{\times}10^1\;TCID_{50}/ml$. The real-time PCR method was reproducible, very specific to BAdV-1, and robust. Moreover, the method was successfully applied to the validation of Chinese Hamster Ovary (CHO)-K1 cells artificially infected with BAdV-1, a commercial CHO master bank, and bovine type 1 collagen. The overall results indicate that this rapid, specific, sensitive, and robust assay can be reliably used for quantitative detection of BAdV-1 contamination during the manufacture of biologics and medical devices using bovine-derived raw materials.

소의 혈액, 세포, 조직, 기관 등이 생물의약품, 조직공학제제, 세포치료제, 의료기기의 원재료로 널리 사용되고 있다. 소유래 성분 원재료에 다양한 바이러스가 오염된 사례가 있기 때문에 소유래 물질을 원재료로 사용한 제제의 바이러스 안전성 검증이 필수적으로 요구된다. Bovine adenovirus type 1(BAdV-1)은 소에게 가장 흔하게 감염되는 바이러스 중의 하나이다. 소유래 물질을 원재료로 하는 생물의약품, 조직공학제제, 세포치료제, 의료기기 등에서 BAdV-1 안전성을 확보하기 위해, 세포주, 원재료, 제조공정, 완제품에서 BAdV-1을 정량적으로 검출하고, 제조공정에서 BAdV-1 제거 검증을 위한 시험법으로 활용이 가능한 TaqMan probe real-time PCR 시험법을 확립하였다. 세포배양법에 의한 감염역가와 비교한 결과, real-time PCR 검출한계는 $7.44{\times}10^1\;TCID_{50}/ml$이었다. 확립 된 시험법의 신뢰성(reliability)을 보증하기 위해 시험법 검증을 실시한 결과, 특이성(specificity)과 재현성(reproducibility), 완건성(robustness)이 우수함을 확인하였다. 확립된 real-time PCR을 생물의약품 제조공정 검증에 적용할 수 있는지 확인한 결과, 인위적으로 BAdV-1을 오염시킨 Chinese Hamster Ovary(CHO) 세포주에서 BAdV-1를 정량적으로 검출할 수 있었다. 확립된 시험법을 항체의약품 생산용 CHO 마스터 세포주와 소유래 type 1 collagen에서 BAdV-1 검출 시험에 산업적으로 적용하였다. 위와 같은 결과에서 확립된 BAdV-1 real-time PCR 시험법은 감염역가 시험법과 같은 생물학적 시험법을 대신할 수 있는 신속하고, 특이성과 민감성이 우수한 시험법임을 확인하였다.

Keywords

References

  1. Benko, M., Harrach, B., and Russell, W.C. 2000. Family Adenoviridae, pp. 227-238. In Van Regenmortel, M.H.V., Fauquet, C.M., Bishop, D.H.L., Carstens, E.B., Estes, M.K., Lemon, S.M., Maniloff, J., Mayo, M.A., McGeoch, D.J., Pringle, C.R., and Wickner, R.B. (eds.), Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, New York, San Diego, USA.
  2. Brennan, F.R., Baumann, A., Blaich, G., de Haan, L., Fagg, H., Kiessing, A., Kronenberg, S., Locher, M., Milton, M., Tibbitis, J., et al. 2015. Nonclinical safety testing of biopharmaceuticals - Addressing current challenges of these novel and emerging therapies. Regul. Toxicol. Pharmacol. 73, 265-275. https://doi.org/10.1016/j.yrtph.2015.07.019
  3. Buckwalter, S.P., Sloan, L.M., Cunningham, S.A., Espy, M.J., Uhl, J.R., Jones, M.F., Vetter, E.A., Mandrekar, J., Cockerill III, F.R., Pritt, B.S., et al. 2014. Inhibition controls for qualitative real-time PCR assays: are they necessary for all specimen matrices?. J. Clin. Microbiol. 52, 2139-2143. https://doi.org/10.1128/JCM.03389-13
  4. Celis, P. and Silvester, G. 2004. European regulatory guidance on virus safety of recombinant proteins, monoclonal antibodies and plasma derived medicinal products. Dev. Biol. Stand. 118, 3-10.
  5. Cho, H.M., Lee, D.H., Kim, H.M., and Kim, I.S. 2008. Real-time RT-PCR for quantitative detection of bovine viral diarrhoea virus during manufacture of biologics. Kor. J. Microbiol. Biotechnol. 36, 34-42.
  6. de Motes, C.M., Clemente-Casares, P., Hundesa, A., Martín, M., and Girones, R. 2004. Detection of bovine and porcine adenoviruses for tracing the source of fecal contamination. Appl. Environ. Microbiol. 70, 1448-1454. https://doi.org/10.1128/AEM.70.3.1448-1454.2004
  7. Delgado, L.M., Bayon, Y., Pandit, A., and Zeugolis, D.I. 2015. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices. Tissue Engin. Part B Rev. 21, 298-313. https://doi.org/10.1089/ten.teb.2014.0290
  8. Erickson, G.A., Bolin, S.R., and Landgraf, J.G. 1991. Viral contamination of fetal bovine serum used for tissue culture: risks and concerns. Dev. Biol. Stand. 75, 173-175.
  9. Hawkes, P.W. 2015 Fetal bovine serum: geographic origin and regulatory relevance of viral contamination. Bioresour. Bioprocess. 2, 34. https://doi.org/10.1186/s40643-015-0063-7
  10. Horaud, F. 1991. Introductory remark: viral safety of biologicals. Dev. Biol. Stand. 75, 3-7.
  11. ICH Expert Working Group. 1998. International conference on harmonization; guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin; availability. Fed. Resist. 63, 51074-51084.
  12. Ill, C.R. and Dehghani, H. 2009. Risk reduction in biotherapeutic products. Curr. Opin. Drug. Discov. Devel. 12, 296-304.
  13. Korea Food and Drug Administration. 2003. Guidance on the validation of nucleic acid amplification tests.
  14. Lee, D.H., Cho, H.M., Kim, H.M., Lee, J., and Kim, I.S. 2008a. Real-time PCR for validation of minute virus of mice safety during the manufacture of mammalian cell culture-derived biopharmaceuticals. Kor. J. Microbiol. Biotechnol. 36, 12-20.
  15. Lee, D.H., Jeong, H.S., Kim, T.E., Oh, S.H., Lee, J.S., and Kim, I.S. 2008b. Real-Time RT-PCR for validation of reovirus type 3 safety during the manufacture of mammalian cell culturederived biopharmaceuticals. Kor. J. Microbiol. 44, 228-236.
  16. Lee, D.H., Jeong, H.S., Lee, J.H., Kim, T.E., Lee, J., and Kim, I.S. 2008c. Real-time PCR for quantitative detection of bovine herpesvirus type 1. Kor. J. Microbiol. 44, 14-21.
  17. Lee, D.H., Lee, J.H., Kim, C.K., Kim, T.E., Bae, J.E., and Kim, I.S. 2008d. Real-time RT-PCR for quantitative detection of bovine parvovirus during manufacture of biologics. Kor. J. Microbiol. Biotechnol. 36, 173-181.
  18. Lee, J.I. and Kim, I.S. 2014. TaqMan probe real-time PCR for quantitative detection of mycoplasma during manufacture of biologics. Kor. Soc. Biotechnol. Bioeng. 29, 361-371.
  19. Lim, J.O. 2015. Regulation policy on cell- and tissue-based therapy products in Korea. Tissue Eng. Part A (Article in press)
  20. Marcus-Sekura, C., Richardson, J.C., Harston, R.K., Sane, N., and Sheets, R.L. 2011. Evaluation of the human host range of bovine and porcine viruses that may contaminate bovine serum and porcine trypsin used in the manufacture of biological products. Biologicals 39, 359-369. https://doi.org/10.1016/j.biologicals.2011.08.003
  21. Merten, O.W. 2002. Virus contamination of cell cultures-a biotechnological view. Cytotechnol. 39, 91-116. https://doi.org/10.1023/A:1022969101804
  22. Moon, J.W., Sohn, D.S., Heo, J.U., and Kim, J.S. 2015. Comparison of two kinds of bovine bone in maxillary sinus augmentation: a histomorphometric study. Implant Dent. 24, 19-24. https://doi.org/10.1097/ID.0000000000000187
  23. Motitschke, A., Ottiger, H.P., and Jungback, C. 2010. Evaluation of the sensitivity of PCR methods for the detection of extraneous agents and comparison with in vivo testing. Biologicals 38, 389-392. https://doi.org/10.1016/j.biologicals.2010.01.002
  24. Nims, R.W. 2006. Detection of adventitious viruses in biologicals-a rare occurrence. Dev. Biol. 123, 153-164.
  25. Oh, S.H., Bae, J.E., and Kim, I.S. 2012. Multiplex reverse transcription-PCR for simultaneous detection of reovirus, bovine viral diarrhea virus, and bovine parainfluenza virus during the manufacture of cell culture-derived biopharmaceuticals. Kor. J. Microbiol. Biotechnol. 40, 339-347. https://doi.org/10.4014/kjmb.1210.10008
  26. Parkman, P.D. 1996. Safety of biopharmaceuticals: a current perspective. Dev. Biol. Stand. 88, 5-7.
  27. Schiff, L.J. 2005. Review: production, characterization, and testing of banked mammalian cell substrates used to produce biological products. In Vitro Cell Dev. Biol. Anim. 41, 65-70. https://doi.org/10.1290/0503024.1
  28. Vaegler, M., Daum, L., Maurer, S., Stenzl, A., Busch, S., and Sievert, K.D. 2015. A bovine collagen type I-based biodegradable matrix as a carrier for tissue-engineered urothelium. J. Stem Cell Res. Ther. 5, 275.
  29. Wong, K. and Xagoraraki, I. 2010. Quantitative PCR assays to survey the bovine adenovirus levels in environmental samples. J. Appl. Micobiol. 109, 605-612.