• Title/Summary/Keyword: Biomedical technology

Search Result 2,698, Processing Time 0.043 seconds

A Study on the Correlationship between Wearable ECG and Clinical ECG Measurements (웨어러블 심전도 측정과 임상 심전도 측정과의 상관관계에 대한 연구)

  • Lee, Kang-Hwi;Lee, Seong-Su;Kim, Sang-Min;Lee, Hyeok-Jae;Min, Kyoung-Jin;Kang, Hyun-Kyu;Lee, Joo-Hyeon;Kwak, Hwy-Kuen;Ko, Yun-Soo;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1690-1698
    • /
    • 2018
  • Recent advances in ICT technology have transformed many of our daily lives and attracted a lot of attention to personal health. Heart beat measurement that reflects cardiac activities has been used in various fields such as exercise evaluation and psychological state evaluation for a long time, but its utilization method is limited due to its differentiation from clinical electrocardiogram. Therefore, in this study, we could observe the change of the measured signal according to the change of the distance and the position of the measuring electrodes which are non-standard electrode configuration. Based on the electric dipole model of the heart, correlation with clinical electrocardiogram could be confirmed by synthesizing multiple surface potentials measured with a shorter electrode distance than standard one. From the electromagnetic point of view, the distance between the measuring electrodes corresponds to the distance that the electric potential by the cardiac electric dipole moves, and the electric potential measured at the body surface is proportional to the moving distance of the electric potential. Therefore, it is preferable to make the distance between electrodes as long as possible, and to position the measuring electrode close to the ventricle rather than the atrium. In addition, it was found that standard electrocardiographic waveforms could be synthesized by using arithmetic sum of multiple measuring electrodes due to the relationship of electrical dipole vectors, which is obtained by dividing and positioning a plurality of measuring electrodes on a reference electrode line, such as Lead-I, Lead-II direction. Also, we obtained a significant Pearson correlation coefficient ($r=0.9113{\pm}0.0169$) as a result of synthetic experiments on four subjects.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF

Osteoporosis: New Biomedical Engineering Aspects

  • Singh, Kanika;Lee, Sung-Hak;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2265-2283
    • /
    • 2006
  • There is tremendous interest of research which surrounds the concept of 'osteoporosis,' as shown by the intense and growing research activity in the field. The urgency to advance knowledge in this area is motivated by the need to understand not only the causes, diagnosis and treatment but also need for early identification or detection of this silent disease. Despite the various researches work is going on, important issues remain unresolved. In this paper, Osteoporosis has also been discussed with respect to biological, engineering, biochemical and physical aspects. The diagnostic and therapeutic techniques have been described for osteoporosis, for better health care. The novelty of the review paper lies in clarifying several myths, explaining the disease in details with biomedical engineering aspects and focuses on the several detection techniques, providing a new direction for early diagnosis of this deadly disease and gives new directions for the POCT device for Osteoporosis.

IDENTIFICATION OF AIRWAY CHARACTERISTICS USING THE INPUT IMPEDANCE

  • Tung, V.X.;Jumaily, Al;Cheng, S.H.;Ro, S.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1037-1044
    • /
    • 2007
  • In an attempt to determine the correlations between the input acoustic impedance and the variations of the physical characteristics of the terminal elements, a five-lobe branched tube-network is mathematically developed and experimentally simulated using a lung simulator. The model takes into account some realistic conditions such as varying cross-sectional areas, flexible wall properties and branching. The effects of airway constrictions expressed by lobe stiffness variations on the impedance are determined for a range of frequencies up to 256 Hz. It is concluded that the developed model is capable of non-invasively predicting various physiological changes in the airway passages.

  • PDF

A Open Structure of the Bird-cage RF coil (개방형 구조를 갖는 새장 고주파코일)

  • Lee, S.Y.;Park, B.S.;Yi, J.H.;Yi, W.;Mun, C.W.;Kang, D.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.475-477
    • /
    • 1997
  • A new open structure of the bird-cage RF coil is proposed. By applying in-phase or out-of-phase voltage to the two terminals of the open bird-cage RF coil, desirable level of RF field uniformity has been achieved. Theoretical resonance frequencies of the RF coil has been obtained and compared with experimental ones. The quality factor of the open bird-cage RF coil has been found to be comparable to the one of the conventional RF coil.

  • PDF

Application of AFLP Markers to DNA Fingerprinting in Rainbow Trout (Oncorhynchus mykiss)

  • Yoon, Jong-Man;Yoo, Jae-Young;Park, Jae-il
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.05a
    • /
    • pp.227-228
    • /
    • 2003
  • The most important of various merits are the capacity to investigate an total genome for polymorphism and AELP is superior to any other systems in terms of the number of sequences amplified per reaction and its reproducibility(Vos et al., 1995). The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of origin o. complexity (Vos et at., 1995). (omitted)

  • PDF

Classification of Organs Using Impedance of Ultrasonic Surgical Knife to improve Surgical Efficiency (초음파 수술기의 수술 효율성 향상을 위한 진동자 임피던스 측정에 따른 조직 분류 연구)

  • Kim, Hong Rae;Kim, Sung Chun;Kim, Kwang Gi;Kim, Young-Woo
    • Journal of Biomedical Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.141-147
    • /
    • 2013
  • Ultrasonic shears is currently in wide use as an energy device for minimal invasive surgery. There is an advantage of minimizing the carbonization behavior of the tissue due to the vibrational energy transfer system of the transducer by applying a piezoelectric ceramic. However, the vibrational energy transfer system has a pitfall in energy consumption. When the movement of the forceps is interrupted by the tissue, the horn which transfers the vibrational energy of the transducer will be affected. A study was performed to recognize different tissues by measuring the impedance of the transducer of the ultrasonic shears in order to find the factor of energy consumption according to the tissue. In the first stage of the study, the voltage and current of the transducer connecting portion were measured, along with the phase changes. Subsequently, in the second stage, the impedance of the transducer was directly measured. In the final stage, using the handpiece, we grasped the tissue and observed the impedance differences appeared in the transducer To verify the proposed tissue distinguishing method, we used the handpiece to apply a force between 5N and 10N to pork while increasing the value of the impedance of the transducer from 400 ${\Omega}$.. It was found that fat and skin tissue, tendon, liver and protein all have different impedance values of 420 ${\Omega}$, 490 ${\Omega}$, 530 ${\Omega}$, and 580 ${\Omega}$, respectively. Thus, the impedance value can be used to distinguish the type of tissues grasped by the forceps. In the future study, this relationship will be used to improve the energy efficiency of ultrasonic shears.

A Study on the Design Stability Verification of Multi-purpose Smart Elevation Work Vehicle (다목적 직립형 스마트 고소작업차 설계 안정성 검증에 대한 연구)

  • Jae-Hyun, Jo;Jin-Hyoung, Jeong;Seung-Hun, Kim;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.449-456
    • /
    • 2022
  • Recently, fruit farms such as apples tend to have higher productivity and reduce pesticide spraying, and demand in Southeast Asia continues to increase as technology for high-grade work vehicles in the Philippines and Korea's agricultural high-grade work vehicles rise to 3,300mm to 3,800mm, so workers can work at only 4.5m. Therefore, this paper is a study to develop a multi-purpose upright smart high-altitude work vehicle that can secure a work space of more than 7m, up 5.5m, and a structural analysis for design and verification of Multi-purpose Smart Elevation Work Vehicle

Cost-Effective Neuro-Modulation Device for Medical Imaging (의료영상 촬영을 위한 비용-효율적인 신경조절 장비)

  • Seoung-Min Hwang;YeongBeen Choi;Gyunhen Lee;Young-Jin Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1165-1170
    • /
    • 2023
  • In this study, we aimed to develop a cost-effective neuro-modulation device for use in neuroscientific and clinical medical imaging applications. To achieve this, we designed and fabricated a brain neuro-modulation device with a material cost of less than $500, and subsequently evaluated its performance. The measured performance was found to be comparable to existing medical devices (TENS), with the developed device being compact in size, measuring less than 3 cm by 3 cm. The outcomes of this study are expected to be applicable in accelerating research and development in related fields, as well as in the rapid commercialization of neuro-modulation technology. Furthermore, it is anticipated that this work will contribute to advancements in functional radiological medical imaging technology and enhance accessibility to brain science and brain stimulation technology.

Changes in Breast-tumor Blood Flow in Response to Hypercapnia during Chemotherapy with Laser Speckle Flowmetry

  • Kim, Hoonsup;Lee, Youngjoo;Lee, Songhyun;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.555-565
    • /
    • 2019
  • Development of a biomarker for predicting tumor-treatment efficacy is a matter of great concern, to reduce time, medical expense, and effort in oncology therapy. In a preclinical study, we hypothesized that the blood-flow parameter based on laser speckle flowmetry (LSF) could be a potential indicator to estimate the efficacy of breast-cancer treatment. To verify this hypothesis, a 13762-MAT-B-III rat breast tumor was grown in a dorsal skinfold window chamber applied to a nude mouse, and the change in blood flow rate (BFR) - or the speckle flow index (SFI) is used together as the same meaning in this manuscript - was longitudinally monitored during tumor growth and metronomic cyclophosphamide treatment. Based on the daily LSF angiogram, several BFR parameters (baseline SFI, normalized SFI, and △rBFR) were compared to tumor size in the normal, treated, and untreated tumor groups. Despite the incomplete tumor treatment, we found that the daily changes in all BFR parameters tended to have partially positive correlation with tumor size. Moreover, we observed that the changes in baseline SFI and normalized SFI responded one day earlier than the tumor shrinkage during chemotherapy. However, daily variations in the hypercapnia-induced △rBFR lagged tumor shrinkage by one day. This study would contribute not only to evaluating tumor vascular response to treatment, but also to monitoring blood-flow-mediated diseases (in brain, skin, and retina) by using LSF in preclinical settings.