• 제목/요약/키워드: Biomedical polymer

검색결과 318건 처리시간 0.027초

Thermomechanical Properties of Poly(D, L-actic-co-glycolic acid) and Graphene Oxide Nanocomposite for Scaffolds

  • Sohn, Il-Yung;Yoon, Ok-Ja;Kim, Duck-Jin;Lee, Nae-Eung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.478-478
    • /
    • 2011
  • The thermomechanical and surface chemical properties of nanocomposite of poly( D, L-actic-co-glycolic acid) (PLGA) were improved significant due to concentration of graphene oxide (GO) nanosheets as nanoscale fillers to PLGA film. Thermomechanical properties of the PLGA/GO (2wt.-%.) nanocomposite were decreased crystallization and melting temperature, weight loss. The storage and loss moduli of the nanocomposite were enhanced by chemical bonding between the oxygenated functional groups of the GO nanosheets and the polymer chains in the PLGA matrix. Enhanced hydrophilicity of nanocomposite caused by embedded GO nanosheets also improved for good biocompatibility. Our findings indicate that thermomechanical properties and biocompatibility of nanocomposite embedded with GO nanosheets are attractive candidates for use in biomedical applications such as scaffolds.

  • PDF

Properties of Blood Compatible Crosslinked Blends of $Pellethene^{(R)}$/Multiblock Polyurethanes Containing Phospholipid Moiety/C-18 Alkyl Chain

  • Yoo, Hye-Jin;Kim, Han-Do
    • Macromolecular Research
    • /
    • 제16권7호
    • /
    • pp.596-603
    • /
    • 2008
  • To improve the mechanical properties, dimensional stability and blood compatibility, the biomedical material $Pellethene^{(R)}$ was blended with multiblock polyurethane (MPU) containing phospopholipid/long alkyl chain (C-18) at the various MPU contents and crosslinked using dicumyl peroxide as a crosslinking agent. The maximum MPU content for stable $Pellethene^{(R)}$/MPU blended films was approximately 30 wt%. The optimum crosslinking agent content and crosslinking time with respect to the mechanical properties were 4 wt% and 3 h, respectively. The mechanical properties (tensile strength and elongation at break) and water absorption of the crosslinked blend film increased with increasing MPU content. The test of platelet adhesion on the surfaces of the crosslinked blend film showed a decrease in the level of platelet adhesion from 70% to 6% with increasing MPU content from 0 to 30 wt%. These results suggest that the crosslinked $Pellethene^{(R)}$/MPU-30 (MPU content: 30 wt%) sample has strong potential as a novel material for blood compatible material applications.

단백질흡착을 막는 소프트콘택트렌즈에 관한 연구 (A Study on Protein Adsorption-resistant Soft Contact Lens)

  • 조종수;정영일
    • 대한의용생체공학회:의공학회지
    • /
    • 제17권3호
    • /
    • pp.291-296
    • /
    • 1996
  • Poly(ethylene glycol)(PEG) macromers terminated with diacrylate Iyoups and interpenetrating poly- mer networks(IPN) composed of poly(hydroxyethyl methacrylate)(PHEMA) or poly(hydroxyethyl methacrylate-co-hydronypropyl methacrylate-co- N-vinyl pyrrolidone ) [ P( HEM A-co- HPM A-co- NVP) ] and PEG macromer were synthesized with the aim of obtaining protein adsorption resistant soft contact lens. Polymerization of PEC macromer resulted in the formation of cross-linked gels due to the multifunctionality of macromer. Crosslinked P(HEMA) or P(HEMA-co-HPMA-co-WVP) chains were interpenetrated into the cross-linked three-dimensional networks of PEG. It was found that albumin adsorption onto the contact lens prepared by P(HEMA-co-HPMA-co-NVP) /PEG IPW decreases with an increase of molecular weight of PEG. Also, it was found that albumin adsorption onto the both contact lens decreases with an increase of concentration of PEC macromer in the IPN preparation. There are also more adequate in the bioinertnen for the contact lens by P(HEMA)/PEG IPN or P (HEMA-co-HPMA-co-NVP)/PEG IPN than that by P(HEMA) or P(HEMA-co-HPMA-co-NVP)

  • PDF

생체고분자의 팽윤현상연구를 위한 핵자기공명 현미영상법의 응용 (Application of NMR Microscopy for the Study of the Swelling Effect in Biopolymers)

  • 이동훈;김승수
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 1997
  • Novel measurement method has been performed for the noninvasive study of the swelling effect detected in hydrophilic polymers using Magnetic Resonance Microscopy. iN NMR images were acquired to measure geometric changes due to the swelling effect occurred in the polymer specimens. In addition to the geometric changes, the water ingress process was visualized noninvgsively. The measurement method performed .in the present study utilized some of NMR's valuable properties, both noninvasiveness and parameter selectivity. It is believed that the method used in the present study may be applicable to the study of biopolymers in which noninvasiveness is particularly important.

  • PDF

Dynamic Mechanical Behavior of Ultra-High Molecular Weight Polyethylene Irradiated with Gamma Rays

  • Lee, Choon-Soo;Jho, Jae-Young;Park, Kuiwon;Hwang, Tae-Won
    • Macromolecular Research
    • /
    • 제12권1호
    • /
    • pp.141-143
    • /
    • 2004
  • We have investigated the dynamic mechanical behavior of ultra-high molecular weight polyethylene (UHMWPE) irradiated with varying doses of gamma rays. A relaxation peak in the loss factor curve, which has not been reported previously in the literature, is observed at a temperature above the crystal melting temperature. The peak is unique to UHMWPE and appears to be related to the high degree of entanglement. Because the temperature and intensity of the peak are reduced by irradiation-induced chain scission and crosslinking, respectively, we believe that the peak is associated with disentanglement relaxation. The behavior of the storage modulus in the melt state agrees with the classical theory of rubber elasticity.

Kinetic Features of the Cobalt Dihalide/Methylaluminoxane Catalytic System in 1,3-Butadiene Polymerization

  • Nath Dilip Chandra Deb;Fellows Christopher M.;Shiono Takeshi
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.338-342
    • /
    • 2006
  • The kinetic features of polymerization with an active site comprising cobalt dihalides ($CoX_2$, where X=Cl, Br, I) activated by methylaluminoxane (MAO) were investigated in 1,3-butadiene polymerization. The catalytic system exhibited the characteristic features of living polymerization. The initiation ($k_i$) and propagation ($k_p$) rate coefficients were estimated using the kinetic model for slow initiation previously reported by Shiono et al. The energy of activation fur the propagation reaction was calculated to be 27-30 $kJmol^{-1}$. The marked changes in reaction rate observed with different halides could be adequately described in terms of variations in the initiation process, with the same Arrhenius curve fitting propagation rate coeffcients estimated from all three halides, suggesting that the halide does not participate in the growing chain end.

이온성 액체를 이용한 바이오폴리머 기반의 소재 개발 및 생명공학 분야로의 응용 (Development of Biopolymer-based Materials Using Ionic Liquids and Its Biotechnological Application)

  • 이상현;박태준
    • KSBB Journal
    • /
    • 제25권5호
    • /
    • pp.409-420
    • /
    • 2010
  • Biopolymer-based materials recently have garnered considerable interest as they can decrease dependency on fossil fuel. Biopolymers are naturally obtainable macromolecules including polysaccharides, polyphenols, polyesters, polyamides, and proteins, that play an important role in biomedical applications such as tissue engineering, regenerative medicine, drug-delivery systems, and biosensors, because of their inherent biocompatibility and biodegradability. However, the insolubility of unmodified biopolymers in most organic solvents has limited the applications of biopolymer-based materials and composites. Ionic liquids (ILs) are good solvents for polar organic, nonpolar organic, inorganic and polymeric compounds. Biopolymers such as cellulose, chitin/chitiosan, silk, and DNA can be fabricated from ILs into films, membranes, fibers, spheres, and molded shapes. Various biopolymer/biopolymer and biopolymer/synthetic polymer composites also can be prepared by co-dissolution of polymers into IL mixtures. Heparin/biopolymer composites are especially of interest in preparing materials with enhanced blood compatibility.

N-hydroxysuccinimidyl phenyl azide와 광반응을 이용한 펩타이드의 마이크로형태 고정화 (Micropatterning of Peptides to Solid Surface by Deep-UV Lithography using N-hydroxysuccinimidyl phenol azide)

  • 김진희;김현정;김종원;장준근;민병구;최태부
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권5호
    • /
    • pp.441-448
    • /
    • 1998
  • 폴리머 표면에 생체물질의 고정화 방법은 생체적합성을 자닌 재료의 개발에있어서 중요한 방법중의 하나이다. 광반응을 이용한 photolithography방법을 사용하여 재료 표면의 원하는 부위에 단백질을 고정할 수 있다. 본 연구에서는 파이브로넥틴의 세포부탁 리간드, GRGDS펩타이드를 N-hydroxysuccinimidyl phenol azide를 이용하여 미세한 선의 형태로 표면에 광반응으로써 고정하였다. 광반응 유도체가 고정된 표면은 형광물질을 사용하여 확인하였다. 또한 혈관내피 세포는 GRGDS펩타이드가 고정화된 표면에서만 부탁됨을 관찰하였다.

  • PDF

분자동역학을 이용한 PMMA 평판의 열접합 및 분리에 대한 연구 (Investigation of Thermal Fusion Bonding and Separation of PMMA Substrates by using Molecular Dynamics Simulations)

  • 이태일
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.111-116
    • /
    • 2018
  • Thermal fusion bonding is a method to enclose open microchannels fabricated on polymer chips for use in lab-on-a-chip (LOC) devices. Polymethyl methacrylate (PMMA) is utilized in various biomedical-microelectromechanical systems (bio-MEMS) applications, such as medical diagnostic kits, biosensors, and drug delivery systems. These applications utilize PMMAs biochemical compatibility, optical transparency, and mold characteristics. In this paper, we elucidate both the conformational entanglement of PMMA molecules at the contact interfacial regime, and the qualitative nature of the thermal fusion bonding phenomena through systematic molecular dynamics simulations.

Up-regulation of inducible nitric oxide synthase expression and inflammatory cytokines by collagen and gelatin in murine macrophages

  • Kim, Ji-Young;Lee, Kyung-Jin;Oh, Duk-Hee;Jung, Kyung-Sik;Shin, Dong-Weon;Cho, Young-Rhan;Jeong, Hye-Gwang
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.121.2-121.2
    • /
    • 2003
  • Synthetic polymers, biological polymer such as collagen and gelatin are employed extensively as backbones in the construction of hydrogels or cell/tissue scaffoldings for various biomedical applications. In the present study, we investigated the effect of collagen and gelatin on the inducible nitric oxide synthase (iNOS) gene expression in the mouse macrophage cell line RAW 264.7. The production of nitric oxide and expression level of iNOS mRNA were induced by both of collagen and gelatin in dose-dependent manner. (omitted)

  • PDF