Browse > Article

Kinetic Features of the Cobalt Dihalide/Methylaluminoxane Catalytic System in 1,3-Butadiene Polymerization  

Nath Dilip Chandra Deb (Chemical Resources Laboratory, Tokyo Institute of Technology)
Fellows Christopher M. (School of Biological, Biomedical and Molecular Sciences, University of New England)
Shiono Takeshi (Chemical Resources Laboratory, Tokyo Institute of Technology)
Publication Information
Macromolecular Research / v.14, no.3, 2006 , pp. 338-342 More about this Journal
Abstract
The kinetic features of polymerization with an active site comprising cobalt dihalides ($CoX_2$, where X=Cl, Br, I) activated by methylaluminoxane (MAO) were investigated in 1,3-butadiene polymerization. The catalytic system exhibited the characteristic features of living polymerization. The initiation ($k_i$) and propagation ($k_p$) rate coefficients were estimated using the kinetic model for slow initiation previously reported by Shiono et al. The energy of activation fur the propagation reaction was calculated to be 27-30 $kJmol^{-1}$. The marked changes in reaction rate observed with different halides could be adequately described in terms of variations in the initiation process, with the same Arrhenius curve fitting propagation rate coeffcients estimated from all three halides, suggesting that the halide does not participate in the growing chain end.
Keywords
1,3-butadiene; cobalt dihalide; methylaluminoxane; initiation rate coefficient; propagation rate coefficient;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 D. C. D. Nath, T. Shiono, and T. Ikeda, Macromol. Chem. Phys., 203, 756 (2002)   DOI   ScienceOn
2 A. Peluso, R. Improta, and A. Zambelli, Organometallics, 19, 411 (2000)   DOI   ScienceOn
3 H. T. Ban, Y. Tsunogae, and T. Shiono, J. Polym. Sci.; Part A: Polym. Chem., 42, 2698 (2004)   DOI   ScienceOn
4 K. Vrieze, in Fluxional Allyl Complexes, L. J. Jackman and F. A. Cotton, Eds., New York, 1975
5 D. C. D. Nath, T. Shiono, and T. Ikeda, Appl. Catal., A, 238, 193 (2003)   DOI   ScienceOn
6 Y. Nakayama, Y. Baba, H. Yasuda, K. Kawakita, and N. Ueyama, Macromolecules, 36, 7953 (2003)   DOI   ScienceOn
7 D. C. D. Nath, T. Shiono, and T. Ikeda, Macromol. Chem. Phys., 204, 2017 (2003)   DOI   ScienceOn
8 M. Seth and T. Ziegler, Macromolecules, 36, 6613 (2003)   DOI   ScienceOn
9 F. De Candia, G. Maglio, A. Musco, and G. Paiaro, Inorg. Chim. Acta, 23, 233 (1968)
10 R. Improta and A. Peluso, Macromolecules, 32, 6852 (1999)   DOI   ScienceOn
11 D. C. D. Nath, T. Shiono, and T. Ikeda, J. Polym. Sci.; Part A: Polym. Chem., 40, 3086 (2002)   DOI   ScienceOn
12 A. Miyazawa, T. Kase, and K. Soga, Macromolecules, 33, 2796 (2000)   DOI   ScienceOn
13 K. Endo and N. Hatakeyama, Kobunshi Ronbunshu, 59, 309 (2002)   DOI   ScienceOn
14 D. C. D. Nath, T. Shiono, and T. Ikeda, Macromol. Chem. Phys., 203, 1171 (2002)   DOI   ScienceOn
15 J. Karl, M. Dahlmann, G. Erker, and K. Bergander, J. Am. Chem. Soc., 120, 5643 (1998)   DOI   ScienceOn
16 A. Miyazawa, T. Kase, and K. Soga, J. Polym. Sci.; Part A: Polym. Chem., 37, 695 (1999)   DOI   ScienceOn
17 K. Endo, Y. Uchida, and Y. Matsuda, Macromol. Chem. Phys., 197, 3515 (1996)   DOI   ScienceOn
18 P. Cass, K. Pratt, T. Mann, B. Laslett, E. Rizzardo, and R. Burford, J. Polym. Sci.; Part A: Polym. Chem., 37, 3277 (1999)   DOI   ScienceOn
19 P. Cass, K. Pratt, K. Fairhall, B. Laslett, and E. Rizzardo, J. Polym. Sci.; Part A: Polym. Chem., 39, 2256 (2001)   DOI   ScienceOn
20 J. C. Marechal, F. Dawans, and P. H. Teyssie, J. Polym. Sci.: Part A-1, 8, 1993 (1970)   DOI
21 G. Ricci and S. Italia, Macromol. Chem. Phys., 195, 1389 (1994)   DOI   ScienceOn