• Title/Summary/Keyword: Biomedical polymer

Search Result 318, Processing Time 0.025 seconds

Antibacterial Effect of the Surface-Modified Biomedical Polyurethane against Staphylococcus aureus and Staphylococcus epidermidis

  • Jeon, Sung-Min;Kim, Hyun-Jung;Lee, Kyu-Back;Kim, Jong-Won;Kim, Mal-Nam
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.259-265
    • /
    • 2001
  • Staphylococal infection still remains to be one of the most serious infections, having various complications in the clinical use of indwelling polymeric medical devices. However, there are a few promising systems showing a high antibacterial effect without causing any demage of polymer backbone under biological environments such as blood or body fluid. In order to resolve this problem, we have designed a new antibiotic releasing system via a hydrolysis mechanism. The surface of biomedical polyurethane (PU) was modified by using 1,6-diisocyanatohexane (HMDI) to immobilize the rifampicon. Also, the immobilized rifampicin was designed to be released by a selective cleavage of the unstable carbamate linkage that exists on the rifampicin-immobilized polyurethane (PHR). The immobilization of rifampicin on the surface of polyurethane was confirmed by the disappearance of the characteristics IR absorbance peak of the isocyanate (-NCO) group at $2,267\;cm^{-1}$. The PHR showed a continuous rifampicin release profile under an aqueous environment of 10 mM of PBS (phosphate-buffered saline) for ove 6 days. The rifampicin molecules, which are released from PHR under an optimal bacterial infection environment, had a higher antibacterial activity against both S. aureus and S. epidermidis than rifampicin-incorporated polyurethane (RIP). In addition, the PHR maintained a stable antibacterial effect under a blood-mimic aqueous environment such as bovine calf serum.

  • PDF

Construction of 3D Culture Medium with Elastin-like Polypeptide (ELP) Hydrogel for Human Pluripotent Stem Cells

  • Lee, Jonghwan;Rhee, Ki-Jong;Jung, Donjgu
    • Biomedical Science Letters
    • /
    • v.19 no.1
    • /
    • pp.41-47
    • /
    • 2013
  • Pluripotent stem cells (PSCs) have lots of potential in biomedical sciences owing to its potential to differentiate into any kind of cells in the body. However, it is still a challenge to culture PSCs on a large scale for application to regenerative medicine. Herein, we introduce a synthetic polymer that enables large-scale suspension culture of human PSCs. By employing suspension culture, it became unnecessary to use conventional substrata such as mouse embryonic fibroblast (MEF) or Matrigel$^{TM}$, which are believed to be main causative sources of xenogeneic contamination in cultured human PSCs in vitro. Human PSCs were cultured in the medium in which elastin-like polypeptide (ELP) dissolved. The ELP in the medium became harden as temperature increases by transforming the medium into a semi-solid gel that supported growth of human PSCs in suspension. Gel-sol transition temperature of ELP can be adjusted by modifying the peptide sequence in which 5 amino acids, Val-Pro-Gly-Xaa-Gly, repeated sequentially. We constructed 3D suspension media having transition temperature around $33{\sim}35^{\circ}C$ using an ELP consisted of 40, 60, or 80 repeats of a monomer, which was Val-Pro-Gly-Val-Gly. Among the ELPs, ELP80 was chosen as the best ELP to support growth of human PSCs in suspension culture. This result suggests that the ELP80 can be a medium component for culturing human PSCs in large-scale.

The Effect of a Shock-Absorbable Polymer(Chitosan) on the Initial Stability and Dynamic Behavior of Dental Implant (충격흡수용 고분자재료의 이용이 Implant 초기안정성과 동적거동에 미치는 영향)

  • Joo, W.;Choi, K.;Kwon, I.C.;Choi, J.B.;Moon, H.J.;Shin, J.W.;Lee, Y.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.337-342
    • /
    • 1997
  • Dental implant has been increasingly used to recover the masticatory unction of tooth. It has been well known that the success of dental implant is heavily dependent on initial stability and long-term osseointegration due to optimal stress distribution in the surrounding bones. The role of periodontal ligament, removed during operation, is to absorb impact force and to distribute them to alveolar bone. or this reason, the study for artificial periodontal ligament has become an important issue in this field. In this study, chitosan was coated on dental implant or the purpose of replacing the role of intact periodontal ligament. The results by experiment and FEM analysis showed : I) Initial stability of dental implant was significantly increased(35%) when the implant was coated with chitosan. II) The coated implant showed higher impact absorption, more even stress distribution and lower stress magnitude under impact force than uncoated implant. Accordingly, the micro-fracture of the surrounding bones due to impact force would be lessened by chitosan coating on dental implant.

  • PDF

Controlled Drug Delivery of Ampicillin-Poly(L-lactic acid) Films for the Treatment of Otitis Media (중이염 치료용 암피실린-폴리락트산 필름의 약물방출조건)

  • La, Sung-Bum;Jeong, Seo-Young;Park, Ki-Dong;Juhn, Sung-Kyun;Goo, Hyun-Chul;Yang, Seung-Eun;Jee, Ung-Kil
    • Journal of Pharmaceutical Investigation
    • /
    • v.24 no.1
    • /
    • pp.41-48
    • /
    • 1994
  • A new local drug delivery device to treat otitis media (OM) has been developed. This device consists of a biodegradable poly(L-lactic acid) (PLLA) film containing antibiotic (ampicillin, AMP), which can be placed into the middle ear cavity and release the therapeutic concentration of AMP for prolonged period. Biodegradable films containing AMP (10 w/w%) were prepared by solution casting method using a suspension of the drug in a $PLLA/CH_{2}Cl_{2}$ solution (molecular weight of PLLA, 100,000 (100 K) and 300,000 (300 K), respectively). PLLA-AMP films were characterized by FTIR, DSC, and SEM. In vitro release of AMP from AMP-PLLA films were examined. The release pattern of AMP from AMP-PLLA films remained consistent from 1 day to 14 days, and the release rates of AMP from AMP-100K-PLLA film and AMP-300K-PLLA film were $0.7384\;{\mu}g/ml/day$, $0.4107\;{\mu}g/ml/day$, respectively.

  • PDF

Restoration of Blink Function in the Paralyzed Rabbit Using Electroactive Polymer (안면신경마비 동물모델에서 전기활성고분자를 이용한 눈 깜박임 기능의 회복)

  • Kwon, Seong-Keun;Sung, Myung-Whun;Kim, Kwang-Hyun;Kim, Hee-Chan
    • Korean Journal of Bronchoesophagology
    • /
    • v.12 no.2
    • /
    • pp.19-25
    • /
    • 2006
  • There have been numerous modalities to recover blink function of orbicularis oculi muscle in patients with facial paralysis. However, there is still no optimal method for reanimation of eyelid. In this study, we tried to recover blink function of paralyzed rabbit's eyelid with the ion polymer metal composite (IPMC) which is one of the electroactive polymers that is spotlighted as artificial muscle. We manufactured IPMC by plating the platinum over perfluorosulphonic acid polymer ($Nafion^{(R)}$). IPMC was coated by Norland optical adhesive for the purpose of insulation and keeping it from dry. IPMC modifications by roughening the surface of Nafion, repetitive plating (maximum 4 times) with platinum, and lengthening the width of IPMC were done. The facial paralysis was induced in the rabbit by sectioning of facial nerve at the main trunk. After minimum period of 4 weeks, IPMC was inserted in the paralyzed rabbit's eyelid. By modification, the force generated by IPMC was enhanced. Restoration of blink function in paralyzed rabbit was achieved on electrical stimulation of the IPMC by 5 voltage direct current. IPMC can be promising option for facial reanimation, but further studies are needed to enhance the efficiency of IPMC.

  • PDF

Antibacterial Activity of Low Molecular Weight Water-Soluble Chitosan (저분자량 수용성 키토산의 항균 활성에 관한 연구)

  • Park, Yoon-Kyung;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.419-423
    • /
    • 2011
  • Chitosan is a natural polymer derived from chitin that has been widely used as a dietary supplement and in a variety of pharmacological and biomedical applications. In addition, water-soluble chitosan has been used to enhance the stability of chitosan in water and reduce cytotoxic activity induced by acetic acid. In this study, the antibiotic activity and mechanism of low molecular weight water-soluble chitosan (LMWSC; MW1, MW3, MW5, and MW10) were examined in pathogenic bacteria cells and vesicles containing bacterial membrane lipids. MW10 displayed potent antibacterial activity against pathogenic bacteria strains and no cytotoxicity against mammalian cells. In addition, the degree of calcein leakage was examined as a function of lipid composition (PE/PG=7/3 w/w). The results of these experiments demonstrated that MW10 promoted leakage in negatively-charged membranes. Furthermore, confocal microscopy revealed that MW10 was located in the plasma membrane.

3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model (이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석)

  • Suh, Sang-Ho;Yoo, Sang-Sin;Roh, Hyung-Woon
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

Study on the Functionality and Application of Natural-polymer with Biocompatibility (생체적합성을 가진 천연고분자의 응용 및 기능성에 관한 연구)

  • Kim, Tae-Hun;Kim, Doo-Eon;Sung, A-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.5
    • /
    • pp.547-552
    • /
    • 2009
  • Chitosan, a natural polymer, has been importantly considered as biomedical materials due to its good biocompatibility and various bio-active characteristes. Water soluble chitosan was then copolymerized EGDMA(ethylene glycol dimethacrylate; used as a cross-linking agent for the free-radical copolymerization), MMA (methylmethacrylate), MA (methacrylic acid) in the presence of AIBN (azobisisobutyronitrile) as a radical initiator. The water content and visible transmissibility, ultimate strength of copolymerized ophthalmic polymer were measured to be 24$\sim$59%, 88$\sim$89% and 0.1$\sim$2.4 Kgf, respectively. And also, we tested for antimicrobial activities against staphylococcus aureus, Pseudomonas aeruginosa. They showed that in case of antimicrobial activities, the values including chitosan were much higher than that of the polymers of no including chitosan, suggesting that the copolymer can be used as a novel ophthalmic material of high performance.

3-D Rat Hepatocytes' Culture on Polystyrene Nanofibrous Scaffold (폴리스티렌 나노섬유상에서의 간세포의 3차원 배양)

  • Kim, Young-Jin;Ahn, Chang-Hyun;Oh, Hwan-Hee;Kim, Young-Jin;Yoon, Kwan-Han;Kang, Inn-Kyu;Kwon, Oh-Hyeong
    • Polymer(Korea)
    • /
    • v.32 no.2
    • /
    • pp.131-137
    • /
    • 2008
  • We have fabricated polystyrene (PS) nanofibrous scaffold for hepatocyte culture by electrospinning method and subsequently coated with specific ligand of Poly[N-p-vinylbenzyl-O-$\beta$-D-galactopyranocyl-($1{\rightarrow}4$)-D-gluconamide](PVLA) to enhance hepatocytes attachment. Rat hepatocytes behavior on the PVLA-coated and non-coated PS nanofibrous matrices have been investigated. Electrospun PS nanofiber structures revealed randomly aligned fibers with average diameter of 500 nm. It is observed that PS nanofibrous matrix could incorporate many cells into the interior of the matrix probably due to the suitable pore size. Cell viabilities cultured on PVLA-coated PS nanofibrous mats were maintained for 3 weeks, while it was decreased rapidly on PVLA-coated PS dishes. High hepatic functions especially for albumin secretion and ammonia removal were maintained at least for 2 weeks on nanofibrous mats but rapidly decreased on flat PS dishes. These results indicate that nanofibrous structure enabled 3-D culture with high level of cell-cell contact results in providing cell-cell communications and subsequent long-term maintenance of specific cell functions.

Synthesis of Homing Peptide-Immobilized Magnetite Nanoparticles through PEG Spacer and Their Biomedical Applications (PEG 스페이서를 통해 Homing 펩타이드를 고정화한 산화철 나노입자의 제조 및 생의학적 응용)

  • Lee, Sang-Min;Xing, Zhi-Cai;Shin, Yong-Suk;Gu, Tae-Hyung;Lee, Byung-Heon;Huh, Man-Woo;Kang, Inn-Kyu
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.586-592
    • /
    • 2012
  • Iron oxides ($Fe_3O_4$) are metabolically secreted after endocytosed by cells, indicating no cytotoxicity. Therefore, they are widely used as a contrast agent before photographing of magnetic resonance imaging. In this study, iron oxide nanoparticles are synthesized by the co-precipitation method and subsequently immobilized with a homing peptide (AP), which specifically interacts with interleukin-4 receptor located on the membrane of endothelial and bladder cancer cells. The size of AP-immobilized iron oxide particle is about 39 nm. Intracellular uptake of the AP-immobilized iron oxide nanoparticles was investigated using bladder cancer cells and fibroblasts as the control. As the result, the nanoparticles are specificially uptaken by bladder cancer cells. However, the nanoparticles are not specificially uptaken by fibroblast. It could be said that the AP-immobilized iron oxide nanoparticles have a potential to be used as a contrast agent for early diagnosis of cancer.