Browse > Article
http://dx.doi.org/10.7317/pk.2012.36.5.586

Synthesis of Homing Peptide-Immobilized Magnetite Nanoparticles through PEG Spacer and Their Biomedical Applications  

Lee, Sang-Min (Department of Polymer Science & Engineering, Kyungpook National University)
Xing, Zhi-Cai (Department of Polymer Science & Engineering, Kyungpook National University)
Shin, Yong-Suk (Department of Polymer Science & Engineering, Kyungpook National University)
Gu, Tae-Hyung (Department of Polymer Science & Engineering, Kyungpook National University)
Lee, Byung-Heon (Department of Biochemistry, School of Medicine, Kyungpook National University)
Huh, Man-Woo (School of Textile and Fashion Technology, Kyungil University)
Kang, Inn-Kyu (Department of Polymer Science & Engineering, Kyungpook National University)
Publication Information
Polymer(Korea) / v.36, no.5, 2012 , pp. 586-592 More about this Journal
Abstract
Iron oxides ($Fe_3O_4$) are metabolically secreted after endocytosed by cells, indicating no cytotoxicity. Therefore, they are widely used as a contrast agent before photographing of magnetic resonance imaging. In this study, iron oxide nanoparticles are synthesized by the co-precipitation method and subsequently immobilized with a homing peptide (AP), which specifically interacts with interleukin-4 receptor located on the membrane of endothelial and bladder cancer cells. The size of AP-immobilized iron oxide particle is about 39 nm. Intracellular uptake of the AP-immobilized iron oxide nanoparticles was investigated using bladder cancer cells and fibroblasts as the control. As the result, the nanoparticles are specificially uptaken by bladder cancer cells. However, the nanoparticles are not specificially uptaken by fibroblast. It could be said that the AP-immobilized iron oxide nanoparticles have a potential to be used as a contrast agent for early diagnosis of cancer.
Keywords
magnetite; homing peptide; IL-4 receptor; intracellular uptake; cancer cell;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. L. Wu, C. S. Lim, S. Fu, A. I. Y. Tok, H. M. Lau, F. Y. C. Boey, and X. T. Zeng, Nanotechnology, 18, 1 (2007).
2 I. K. Kang, B. K. Kwon, J. H. Lee, and H. B. Lee, Biomaterials, 14, 787 (1993).   DOI   ScienceOn
3 A. C. Antony, Blood, 79, 2807 (1992).
4 Z. F. Gan, J. S. Jiang, Y. Yang, B. Du, M. Qian, and P. J. Zhang, J. Biomed. Mater. Res., 84A, 10 (2008).
5 N. I. Obiri, G. G. Hillman, G. P. Haas, S. Sud, and R. K. Puri, J. Clin. Invest., 91, 88 (1993).   DOI   ScienceOn
6 T. Shimamura, R. E. Royal, and M. Kioi, Cancer Res., 67, 9903 (2007).   DOI   ScienceOn
7 G. Y. Lee, J. H. Kim, G. T. Oh, B. H. Lee, I. C. Kwon, and I. S. Kim, J. Control. Release, 155, 211 (2001).
8 K. Naoki, I. Shinya, T. Taichi, and M. Tomoaki, Invest. Radiol., 37, 202 (2002).
9 D. Pouliquen and C. Chouly, "Manetic Microcarriers for Medical Applications", in Microcapsules and Liposomes, R. Archady, Editor, Citus Books 2, p 343 (1999).
10 M. Lewin, N. Carlesso, and C. H. Tung, Nat. Biotechnol., 18, 410 (2000).   DOI   ScienceOn
11 R. Weissleder, D. D. Stark, and B. Engelstad, Am. J. Roentgenol., 152, 167 (1989).   DOI   ScienceOn
12 R. Weissleder, Magn. Reson. Med., 22, 209 (1991).   DOI
13 R. L. Magin, G. Bacic, M. R. Niesman, J. C. Alameda, S. M. Wright, and H. M. Swartz, Magn. Reson. Med., 20, 1 (1991).   DOI
14 C. C. Berry, S. Wells, S. Charles, and A. S. G. Curtis, Biomaterials, 24, 4551 (2003).   DOI   ScienceOn
15 L. A. Harris, J. D. Goff, A. Y. Carmichael, J. S. Riffle, J. J. Harburn, T. G. St. Pierre, and M. Saunders, Chem. Mater., 15, 1367 (2003).   DOI   ScienceOn
16 C. W. Jung, Magn. Reson. Imaging, 13, 675 (1995).   DOI   ScienceOn
17 K. Park, H. Y. Hong, H. J. Moon, B. H. Lee, I. S. Kim, I. C. Kwon, and K. Rhee, J. Control. Release, 128, 217 (2008).   DOI   ScienceOn
18 C. Liu, H. Honda, A. Ohshima, M. Shinkai, and T. Kobayashi, J. Biosci. Bioeng., 89, 420 (2000).   DOI   ScienceOn
19 H. Honda, A. Kawabe, M. Shinkai, and T. Kobayashi, J. Ferment. Bioeng., 86, 191 (1998).   DOI   ScienceOn
20 Z. Xu, Q. Liu, and J. A. Finch, Appl. Surf. Sci., 120, 269 (1997).   DOI   ScienceOn
21 Z. C. Xing, M. J. Park, S. J. Han, I. K. Kang, M. J. Choi, B. H. Lee, and Y. Chang, Macromol. Res., 19, 897 (2011).   DOI   ScienceOn
22 S. Santra, R. Tapec, N. Theodoropoulou, J. Donson, A. Hebard, and W. H. Tan, Langmuir, 17, 2900 (2001).   DOI   ScienceOn
23 L. Calabi, G. Alfieri, L. Biondi, and L. Paleari, J. Mag. Res., 156, 222 (2002).   DOI   ScienceOn
24 C. Choi, J. K. Kim, M. K. Jang, and J. W. Nah, Polymer(Korea), 35, 119 (2011).
25 W. Susanne, S. Jorg, P. Herbert, H. Bernd, and T. Matthias, Invest. Radiol., 37, 167 (2002).   DOI   ScienceOn
26 S. Albrecht, Z. Claus, G. Cindy, J. Manuela, M. Franziska, J. Tobias, P. Herbert, and G. Tilman, Free Radic. Biol. Med., 36, 976 (2004).   DOI   ScienceOn
27 U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory, VCH, Weinheim, 1991.
28 A. K. Fahlvik, J. Klavenessm, and D. D. Stark, J. Magn. Reson. Imaging, 3, 187 (1993).   DOI   ScienceOn