• Title/Summary/Keyword: Biomedical monitoring

Search Result 461, Processing Time 0.027 seconds

Implementation of U-Healthcare System for Chronic Disease Management (만성 질환자 관리를 위한 U-Healthcare 시스템 구현)

  • Ryu, Geun-Teak;Choi, Hun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.233-240
    • /
    • 2014
  • According to the recent increasing trend of the ages, numbers of patients with chronic diseases are increasing and issues for health care are importantly emerged. In this thesis the research implements U-health care system for health care of patients with chronic diseases. The suggested system for health care of patients with chronic diseases composes bio measurement system, mobile gateway and medical information management server, and bio-signals are composed with modules such as electrocardiogram, blood pressure, blood sugar, oxygen saturation if configured as client. Blood sugar check was considered and implemented to be chosen the ways to transmit through bio measurement system or through gateway. Suggested bio measurement system and mobile gateway are transmitted through Bluetooth. The transmitted biodata is searched by observing health check through mobile gateway, by transmitting through network server, and by using client. By implementing bio signal observation system of patients with chronic diseases, present health check is available by monitoring measured bio data, and various bio signals are transmitted in the mobile environment.

Cell-SELEX Based Identification of an RNA Aptamer for Escherichia coli and Its Use in Various Detection Formats

  • Dua, Pooja;Ren, Shuo;Lee, Sang Wook;Kim, Joon-Ki;Shin, Hye-su;Jeong, OK-Chan;Kim, Soyoun;Lee, Dong-Ki
    • Molecules and Cells
    • /
    • v.39 no.11
    • /
    • pp.807-813
    • /
    • 2016
  • Escherichia coli are important indicator organisms, used routinely for the monitoring of water and food safety. For quick, sensitive and real-time detection of E. coli we developed a 2'F modified RNA aptamer Ec3, by Cell-SELEX. The 31 nucleotide truncated Ec3 demonstrated improved binding and low nano-molar affinity to E. coli. The aptamer developed by us out-performs the commercial antibody and aptamer used for E. coli detection. Ec3(31) aptamer based E. coli detection was done using three different detection formats and the assay sensitivities were determined. Conventional Ec3(31)-biotin-streptavidin magnetic separation could detect E. coli with a limit of detection of $1.3{\times}10^6CFU/ml$. Although, optical analytic technique, biolayer interferometry, did not improve the sensitivity of detection for whole cells, a very significant improvement in the detection was seen with the E. coli cell lysate ($5{\times}10^4CFU/ml$). Finally we developed Electrochemical Impedance Spectroscopy (EIS) gap capacitance biosensor that has detection limits of $2{\times}10^4CFU/mL$ of E. coli cells, without any labeling and signal amplification techniques. We believe that our developed method can step towards more complex and real sample application.

Investigation of Radiation Effects on the Signal and Noise Characteristics in Digital Radiography (디지털 래디오그라피의 신호 및 잡음 특성에 대한 방사선 영향에 관한 연구)

  • Kim, Ho-Kyung;Cho, Min-Kook;Graeve, Thorsten
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.756-767
    • /
    • 2007
  • For the combination of phosphor screens having various thicknesses and a photodiode array manufactured by complementary metal-oxide-semiconductor (CMOS) process, we report the observation of image-quality degradation under the irradiation of 45-kVp spectrum x rays. The image quality was assessed in terms of dark pixel signal, dynamic range, modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). For the accumulation of the absorbed dose, the radiation-induced increase both in dark signal and noise resulted in the gradual reduction in dynamic range. While the MTF was only slightly affected by the total ionizing dose, the noise power in the case of $Min-R^{TM}$ screen, which is the thinnest one among the considered screens in this study, became larger as the total dose was increased. This is caused by incomplete correction of the dark current fixed-pattern noise. In addition, the increase tendency in NPS was independent of the spatial frequency. For the cascaded model analysis, the additional noise source is from direct absorption of x-ray photons. The change in NPS with respect to the total dose degrades the DQE. However, with carefully updated and applied correction, we can overcome the detrimental effects of increased dark current on NPS and DQE. This study gives an initial motivation that the periodic monitoring of the image-quality degradation is an important issue for the long-term and healthy use of digital x-ray imaging detectors.

A Dielectrophoresis Microfluidic Device for Trapping Bioparticles at Low Voltage and Frequency

  • Jeong, Jin-Tae;Shin, Hyun-Min;Kim, Duwoon;Lee, Kyeong-Hwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • Purpose: The necessity for precise manipulation of bioparticles has greatly increased in the fields of bioscience, biomedical, and environmental monitoring. Dielectrophoresis (DEP) is considered to be an ideal technique to manipulate bioparticles. The objective of this study is to develop a DEP microfluidic device that can trap fluorescent beads, which mimic bioparticles, at the low voltage and frequency of the sinusoidal signal supplied to the microfluidic device. Methods: A DEP microfluidic device, which is composed of polydimethylsiloxane (PDMS) channels and interdigitated electrode networks, is fabricated to trap fluorescent beads. The geometry of the interdigitated electrodes is determined through computational simulation. To determine the optimum voltage and frequency of the sinusoidal signal supplied to the device, the experiments of trapping beads are conducted at various combinations of voltage and frequency. The performance of the DEP microfluidic device is evaluated by investigating the correlation between fluorescent intensities and bead concentrations. Results: The optimum ratio of the widths between the negative and positive electrodes was 1:4 ($20:80{\mu}m$) at a gap of $20{\mu}m$ between the two electrodes. The DEP electrode networks were fabricated based on this geometry and used for the bead trapping experiments. The optimum voltage and frequency of the supplied signal for trapping fluorescent beads were 15 V and 5 kHz, respectively. The fluorescent intensity of the trapped beads increased linearly as the bead concentration increased. The coefficient of determination ($R^2$) between the fluorescent intensity and the bead concentration was 0.989. Conclusions: It is concluded that the microfluidic device developed in this study is promising for trapping bioparticles, such as a cell or virus, if they are conjugated to beads, and their concentration is quantified.

Clinical Pharmacology of Mycophenolic Acid as Immunosuppressant in Organ Transplaantation

  • Kang, Ju-Seop;Lee, Joo-Won;Jhee, Ok-Hwa;Om, Ae-Son;Lee, Min-Ho;Shaw, Leslie M.
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.65-77
    • /
    • 2005
  • Present article reviews about clinical pharmacology of mycophenolic acid (MPA), the active form of mycophenolate mofetil (MMF), as widely used component of immunosuppressive regimens in the organ transplantation field. MMF, used alone or concomitantly with cyclosporine or tacrolimus, has approved in reducing the incidence of acute rejection and has gained widespread use in solid organ such as kidney, heart and liver transplantation. The application of MPA and development of MMF has shown a considerable impact on immunosuppressive therapy for organ transplantation as a new immunosuppressive agent with different mechanism of action from other drugs after early 1990s. In particular aspect, use of MMF, a morpholinoethyl ester of MPA, represented a significant advance in the prevention of organ allograft rejection as well as allograft and patient survival. In considering MMF clinical data, it is important to note that there is a strong correlation between high MPA area under curve(AUC) values and a low probability of acute allograft rejection. Individual trials have shown that MMF is generally well tolerated and revealed that MMF decreased the relative risk of developing chronic allograft rejection compared with azathioprine. Recent clinical investigations suggested that improved effectiveness and tolerability will results from the incorporation of MPA therapeutic drug monitoring into routine clinical practice, providing effective MMF dose individualization in renal and heart transplant patients. Therefore, MMF has a selective immunosuppressive effect with minimal toxicity and has shown to be more effective that other agents as next step of immunosuppressive agents and regimens that deliver effective graft protection and immunosuppression along with a more favorable side effect.

Pharmacokinetics of Astromicin Following a Single Intravenous Infusion in Healthy Korean Subjects (정상성인 한국인에서 아스트로마이신 1회 점적 주사후 약물동태학적 평가)

  • Bok, Hae Sook;Choi, Kyung Eob;Kim, Yeon Hwa;Peck, Kyong Ran;Song, Jae Hoon
    • Korean Journal of Clinical Pharmacy
    • /
    • v.13 no.2
    • /
    • pp.55-58
    • /
    • 2003
  • Astromicin is an aminoglycoside antiviotic that is structually different from conventional aminoglycosides. Astromicin has been shown to be active against aerobic Gram-negative bacilli. The pharmacokinetics of astromicin were determined in 12 healthy volunteers ($65.5\pm5.23\;kg$ of body weight) following a 30-min continuous intravenous infusion at a dose of 200 mg. The plasma and urine samples were collected up to 24 h and drug concentrations were measured by a bioassay using Bacillus subtilis. Pharmacokinetic parameters were calculated by fitting individual concentration-time curve to a one-exponential decay model. The plasma levels were $16.9\pm1.68\;and\;1.05\pm0.346\l{\mu}g/ml$ at 0 h and 8 h after the infusion, respectively. The elimination half-life of astromicin was $1.86\pm0.360\;h$ The volume of distribution was $0.182\pm0.0164\;L/kg$, and the total body clearance was $5.25\pm1.74\;L/h$. These pharmacokinetic parameters were similar to these of gentamicin, tobramycin, and amikacin. Therefore, it is recommended that therapeutic drug monitoring of astromicin could be conducted in a similar fashion as the other aminoglycosides.

  • PDF

Estimating blood pressure using the pulse transit time of the two measuring from pressure pulse and PPG

  • Kim, Gi-Ryon;Ye, Soo-Young;Kim, Jae-Hyung;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.87-94
    • /
    • 2008
  • Blood pressure (BP), one of the most important vital signs, is used to identify an emergency state and reflects the blood flow characteristics of the cardiovascular system. The conventional noninvasive method of measuring BP is inconvenient because patients must wear a cuff on their arm and the measurement process takes time. This paper proposes an algorithm for estimating the BP using the pulse transit time (PTT) of the photoplethysmography (PPG) and pressure pulse from finger at the same time as a more convenient way to measure the BP. After recording the electrocardiogram (ECG), measuring the pressure pulse, and performing PPG, we calculated the PTT from the acquired signals. Then, we used a multiple regression analysis to measure the systolic and diastolic BP indirectly. Comparing the BP measured indirectly using the proposed algorithm and the real BP measured with a sphygmomanometer, the systolic pressure had a mean error of ${\pm}3.240$ mmHg and a standard deviation of 2.530 mmHg, while the diastolic pressure had a satisfactory result, i.e., a mean error of ${\pm}1.807$ mmHg and a standard deviation of 1.396 mmHg. These results are more superior than existing method estimating blood pressure using the one PTT and satisfy the ANSI/AAMI regulations for certifying a sphygmomanometer i.e., the measurement error should be within a mean error of ${\pm}5$ mmHg and a standard deviation of 8 mmHg. These results suggest the possibility of applying our method to a portable, long-term BP monitoring system.

Study about the Applicable Plan of GIS on Range of Magnetic Field Emitted from 60 Hz Powerline (60Hz 고압 송전선로의 자기장 발생범위에 대한 GIS 적용 방안에 대한 연구)

  • Hong, Seung Cheol;Choi, Seong Ho;Kim, Yoon Shin;Park, Jae Young
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.4
    • /
    • pp.271-277
    • /
    • 2006
  • In this study, we investigated the applicable plan of GIS on the environmental impact assessment of 60 Hz Powerline. So we assessed distance data based on calculations by use of 2D and 3D Geographical information systems(GIS) and distance data based on measurements on 1: 5000 maps accord with on site distance measurements to use input data for calculating magnetic field. One hundred eight of the on site measured addresses were selected from residences. The data were achieved by measuring the distance between residence and power line on maps with scales of 1: 5000. The digital map was obtained from National Geographic Information Institute with scales of 1: 5000, and we made 2D and 3D map. Correlation analyses were performed for statistical analyses. For the 3D GIS versus on site comparison of different exposure categories, 70 of 108 measurements were assigned to the correct category. Similarly for 2D GIS versus on site comparison, 71 of 108 were correctly categorized. When comparing map measurement with on site measurement, 62 of 108 were correctly categorized. When the correlation analysis was performed, best correlation was found between 3D GIS and on site measurements with r = 0.84947 (p<0.0001). The correlation between map and on site measurement yielded an r of 0.76517 (p<0.0001). Since the GIS measurements and map measurement were made from the center point in the building and the on site measurements had to be made from the closest wall on the building, this might introduce and additional error in urban areas. The difference between 2D and 3D calculations were resulted from the height of buildings.

Research of Developing of Standards for Electronic Thermometers (전자식체온계 기준규격 개발 연구)

  • Kim, E.J.;Lee, M.J.;Lee, B.Y.;Park, K.G.;Kim, D.S.;Lee, I.S.;Park, H.D.;Jeong, H.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.123-128
    • /
    • 2010
  • The thermometers is widely used in diagnostic medical devices, and the safety and accurate performance of these devices are important in the diagnosis and monitoring of personal health. Especially, the accuracy of infra-red thermometer is highly emphasized. Here two typical thermometers are utilized for this purpose: the electronic thermometers measure body temperature by contacting to subject while infra-red thermometers measure by no contacting to subject. Therefore, the evaluating items of each thermometer are different, and the standard for each temperature is highly needed. But, there have been no international standards of each thermometer such as IEC. In this paper, we developed the standards of electronic and infra-red thermometer based on national standards such as KS, ASTM, EN, JIS and FDA guidance. The new standards focused on the safety and suitable performance for health care. This standards were applied to enact and revise the electronic medical device standards. So it can be applied to evaluate the safety and performance on technical file review. We predict that this standard will improve the quality of diagnostic medical devices (thermometers) and increase the international competitive power of domestic product.

Development of Implantable Blood Pressure Sensor Using Quartz Wafer Direct Bonding and Ultrafast Laser Cutting (Quatrz 웨이퍼의 직접접합과 극초단 레이저 가공을 이용한 체내 이식형 혈압센서 개발)

  • Kim, Sung-Il;Kim, Eung-Bo;So, Sang-kyun;Choi, Jiyeon;Joung, Yeun-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.168-177
    • /
    • 2016
  • In this paper we present an implantable pressure sensor to measure real-time blood pressure by monitoring mechanical movement of artery. Sensor is composed of inductors (L) and capacitors (C) which are formed by microfabrication and direct bonding on two biocompatible substrates (quartz). When electrical potential is applied to the sensor, the inductors and capacitors generates a LC resonance circuit and produce characteristic resonant frequencies. Real-time variation of the resonant frequency is monitored by an external measurement system using inductive coupling. Structural and electrical simulation was performed by Computer Aided Engineering (CAE) programs, ANSYS and HFSS, to optimize geometry of sensor. Ultrafast laser (femto-second) cutting and MEMS process were executed as sensor fabrication methods with consideration of brittleness of the substrate and small radial artery size. After whole fabrication processes, we got sensors of $3mm{\times}15mm{\times}0.5mm$. Resonant frequency of the sensor was around 90 MHz at atmosphere (760 mmHg), and the sensor has good linearity without any hysteresis. Longterm (5 years) stability of the sensor was verified by thermal acceleration testing with Arrhenius model. Moreover, in-vitro cytotoxicity test was done to show biocompatiblity of the sensor and validation of real-time blood pressure measurement was verified with animal test by implant of the sensor. By integration with development of external interrogation system, the proposed sensor system will be a promising method to measure real-time blood pressure.