• Title/Summary/Keyword: Biomechanical design

Search Result 141, Processing Time 0.025 seconds

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Effects of Screw Diameter and Thread Shape on the Strength of Transpedicular Screw Fixation in Posterior Spinal Fusion (후방 척추고정술에서 척추경 나사못의 크기와 형태가 척추 고정력에 미치는 영향에 대한 연구)

  • Mun, Mu-S.;Ryu, Jei-C.;Yoo, Myung-C.;Kim, Ki-T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.23-26
    • /
    • 1995
  • The objectives of the present study are 1)to find the effect of the diameter of transpedicular screws on their fixational strength in pedicles under static pull-out loading, 2)to determine the biomechanical correlation between the pedicle diameter and the screw diameter, and 3)to find the effects of other factors in the screw design, such as materials, screw pitch, thread height and shape on their fixational strength. Biomechanical tests (Test I) were performed to evaluate the effect of the screw diameter on pull-out strength by using 60 porcine pedicls and six groups of custom-made pedicle screws with different diameters (the major and the minor diameter of the screws used in the testing varied from 4mm upto 9mm and from 3mm upto 8mm, respectively) while all other factors (materials, screw pitch, thread height and shape etc.) were fixed. In Test II, by using 61 porcine pedicles, the relationship between the ratio of the pedicle diameter and the screw diameter(=aspect ratio) of the custum-made screw and the pull-out strength of the screw was investigated. Test III was performed with 94 porcine pedicles and 8 different types of the commercial screws from 6 major productors in order to determine the effect of the screw diameter, pitch and the thread shape on the pull-out strength of the screw, respectively. The results of Test I showed that the axial pull-out resistance of the screw could be increased prportionaly to the screw diameter(P<0.05). But this increase in the pull-out resistance did not found when the screws of 4mm or 9mm in the diameter were employed. It was found from the results of Test II that the screws had its maximum pull-out resistant force when the aspect ratio ranging 40 - 69% (P<0.05). based on the results for the major diameter against the minor diameter of screw, the maximal pull-out resistance was found at 60-65% (P<0.05). According to these biomechanical testing results, it seems that the screw with a moderately large pitch is more desirable and the buttress-shaped screw can provide stronger fixation than the V-shape one can, if other designal factor and conditions were fixed.

  • PDF

Biomechanical Analysis of Trail Running Shoes Applied to Korean Shoe-Lasts (한국인 족형을 적용한 트레일 러닝화의 생체역학적 분석)

  • Park, Seung-Bum;Lee, Kyung-Deuk;Kim, Dae-Woong;Yoo, Jung-Hyeon;Kim, Kyung-Hun;An, Chang-Shin;Lee, Tae-Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.221-230
    • /
    • 2010
  • The purpose of this study was to analyze biomechanical factors of trail running shoes applied to korean shoe-lasts. 10 healthy male subjects with an average age of 37.2 years(SD=8.28), weight of 69.6 kg(SD=10.56) and a height of 171 cm(SD=4.93) were recruited for this study. Ten males walked on a treadmill wearing four different shoes. Foot pressure data was collected using a Pedar-X mobile system(Novel Gmbh., Germany) operating at the 1000 Hz. Surface EMG signals for tibialis anterior, gastrocnemius, vastus lateralis and biceps femoris were acquired at 1000 Hz using Noraxon TeleMyo DTS system(Noraxon Inc., USA). Foot pressure and leg muscle fatigue were measured and calculated during walking. The results are as follows: After walking 60 minutes, Type A showed a lower MPF. MPF values were significantly different from each muscle(p<.05). Therefore, Type A shoe might decrease muscle fatigue in the legs while walking. In addition, Type It showed that Type A shoe has the highest contact area and the lowest maximum pressure. As a result of the analysis, Trail running shoes will use a new design to reduce muscle fatigue and are expected to increase comfort and fitting.

Load response of the natural tooth and dental implant: A comparative biomechanics study

  • Robinson, Dale;Aguilar, Luis;Gatti, Andrea;Abduo, Jaafar;Lee, Peter Vee Sin;Ackland, David
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.3
    • /
    • pp.169-178
    • /
    • 2019
  • PURPOSE. While dental implants have displayed high success rates, poor mechanical fixation is a common complication, and their biomechanical response to occlusal loading remains poorly understood. This study aimed to develop and validate a computational model of a natural first premolar and a dental implant with matching crown morphology, and quantify their mechanical response to loading at the occlusal surface. MATERIALS AND METHODS. A finite-element model of the stomatognathic system comprising the mandible, first premolar and periodontal ligament (PDL) was developed based on a natural human tooth, and a model of a dental implant of identical occlusal geometry was also created. Occlusal loading was simulated using point forces applied at seven landmarks on each crown. Model predictions were validated using strain gauge measurements acquired during loading of matched physical models of the tooth and implant assemblies. RESULTS. For the natural tooth, the maximum vonMises stress (6.4 MPa) and maximal principal strains at the mandible ($1.8m{\varepsilon}$, $-1.7m{\varepsilon}$) were lower than those observed at the prosthetic tooth (12.5 MPa, $3.2m{\varepsilon}$, and $-4.4m{\varepsilon}$, respectively). As occlusal load was applied more bucally relative to the tooth central axis, stress and strain magnitudes increased. CONCLUSION. Occlusal loading of the natural tooth results in lower stress-strain magnitudes in the underlying alveolar bone than those associated with a dental implant of matched occlusal anatomy. The PDL may function to mitigate axial and bending stress intensities resulting from off-centered occlusal loads. The findings may be useful in dental implant design, restoration material selection, and surgical planning.

Biomechanics of Hip and Hip Replacement Arthroplasty (고관절 및 인공 고관절의 생역학)

  • Lee, Young-Kyun;Choi, Ji Hye;Won, Heejae;Koo, Kyung-Hoi
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.5
    • /
    • pp.377-383
    • /
    • 2019
  • The biomechanics study of the hip is aims to understand and explore the dynamic principles of weight transfer through the hip joint. This basic science knowledge can be applied in a variety of areas, including degenerative joint diseases and hip replacement arthroplasty. In particular, understanding of the biomechanics of the hip has led to the development of materials, design and fixation of implants, and it can be applied in various areas, such as the selection of surgical methods and the location of the implant. Moreover, it is essential to have good knowledge of the biomechanics of the hip to achieve better clinical results for patients. Therefore, this paper introduces the basic knowledge and biomechanical characteristics of a normal hip and hip replacement arthroplasty, which are needed to approach the biomechanics of the hip.

Ten technical aspects of baseplate fixation in reverse total shoulder arthroplasty for patients without glenoid bone loss: a systematic review

  • Reinier W.A. Spek;Lotje A. Hoogervorst;Rob C. Brink;Jan W. Schoones;Derek F.P. van Deurzen;Michel P.J. van den Bekerom
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.88-107
    • /
    • 2024
  • The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clinical, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was performed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11 biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate fixation.

Numerical study of 10-year-old child forearm injury

  • Mao, Haojie;Cai, Yun;Yang, King H.
    • Advances in biomechanics and applications
    • /
    • v.1 no.3
    • /
    • pp.143-158
    • /
    • 2014
  • Forearm fractures in children are very common among all pediatric fractures. However, biomechanical investigations on the pediatric forearm are rather scarce, partially due to the complex anatomy, closely situated, interrelated structures, highly dynamic movement patterns, and lack of appropriate tools. The purpose of this study is to develop a computational tool for child forearm investigation and characterize the mechanical responses of a backward fall using the computational model. A three-dimensional 10-year-old child forearm finite element (FE) model, which includes the ulna, radius, carpal bones, metacarpals, phalanges, cartilages and ligaments, was developed. The high-quality hexahedral FE meshes were created using a multi-block approach to ensure computational accuracy. The material properties of the FE model were obtained by scaling reported adult experimental data. The design of computational experiments was performed to investigate material sensitivity and the effects of relevant parameters in backward fall. Numerical results provided a spectrum of child forearm responses with various effective masses and forearm angles. In addition, a conceptual L-shape wrist guard design was simulated and found to be able to reduce child distal radius fracture.

The use of surgical guide stent for implant placement (임플란트 식립을 위한 수술 가이드의 사용)

  • Lee, Ji-Yeon;Yoon, Ji-Young;Oh, Namsik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.366-375
    • /
    • 2014
  • Surgical guide not only provide diagnosis and treatment plan, but even location and direction of implantation. Surgical guide could be divided into non-limited design, partially limited design, and completely limited design. Partially limited design is easily manufactured and inexpensive but less accuracy, compared to completely limited design. From this approach, partially limited design may be particularly effective in patients who present with a single missing tooth or partially edentulous teeth. Completely limited design is anatomically accuracy, esthetical and functional, optimized treatment for prosthetic and biomechanical perspective, and also minimizes discomfort for post-treatment. The purpose of this study is to review previous studies of various surgical guides and applying in clinic.

Hip Protector Design Process for the Korean Elderly

  • Jeon, Eun-Jin;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.18 no.4
    • /
    • pp.520-530
    • /
    • 2016
  • This research aims to propose an ergonomic design process for hip protector based on previous studies, existing products, multidisciplinary experts opinion, and wearing test. The elderly are more likely to suffer a hip fracture when they fall due to their physical changes in skeletal form, muscle quantity, bone density, and joint movement. A hip protector is an effective product to prevent hip fractures in the elderly but it also has a problem in that it is uncomfortable. Therefore there is a high chance that it won't be able to prevent hip fractures properly. Since the comfort of a hip protector is one of the most critical elements in preventing a hip fracture, we need to keep improving the hip protector for mobility and usability. Based on the previous studies and limitations of current hip protector products, we need to come up with an optimal design for the Korean elderly. First, knowledge has to be built relating to the ergonomic design of the hip protector considering body shape and size analysis using 3D-scan data, and biomechanical analysis on hip fracture. Second, we need to develop a design process including hip protector pattern design, and wearing evaluation with virtual system. Third, we suggest to reevaluate and verify the design procedure from impact evaluation using testing simulator, virtual evaluation of impact, to wearing comfort and usability evaluation. This design process presented in this study would be expected to contribute to the development of ergonomic hip protector which is suitable for the Korean elderly.

An Analysis of Physical Load of the Shipping Work in Cold Storage Warehouses (냉동창고 출하작업의 신체부담 분석에 관한 연구)

  • 장성록
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.192-198
    • /
    • 1999
  • Work-related musculoskeletal disorders constitute a major source of employee disability and lost wages. Cumulative Trauma Disorders(CTD) refers to a category of physical conditions which result from chronic musculoskeletal injury. Assessment of CTD risk in industry at early stage allows for early control, a safe environment, and a healthier workforce. In this study, the physical load of the shipping work in the cold storage warehouse were especially investigated. Employees were working with almost unnatural posture in a very restricted work space. The questionnaire and biomechanical analysis were used to evaluate the physical load. Results from analyses showed that they were sufficiently exposed to CTD due to repetition and unnatural posture. Based on the analysis, ways for improving working conditions are proposed. The analysis and proposals in this paper will serve as a basic tool for designing/redesigning working environment such as improvement of tools and equipments, design of times for work/rest cycle.

  • PDF