DOI QR코드

DOI QR Code

Ten technical aspects of baseplate fixation in reverse total shoulder arthroplasty for patients without glenoid bone loss: a systematic review

  • Reinier W.A. Spek (Department of Orthopaedic Surgery, Flinders University and Flinders Medical Center) ;
  • Lotje A. Hoogervorst (Department of Orthopaedics, Leiden University Medical Center) ;
  • Rob C. Brink (Department of Orthopaedic Surgery, OLVG Amsterdam) ;
  • Jan W. Schoones (Walaeus Library, Leiden University Medical Center) ;
  • Derek F.P. van Deurzen (Department of Orthopaedic Surgery, OLVG Amsterdam) ;
  • Michel P.J. van den Bekerom (Department of Orthopaedic Surgery, OLVG Amsterdam)
  • Received : 2023.06.17
  • Accepted : 2023.08.17
  • Published : 2024.03.01

Abstract

The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clinical, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was performed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11 biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate fixation.

Keywords

Acknowledgement

The first author (RWAS) has received payments during the study period including <$10,000 from Anna Fonds NOREF (Mijdrecht, the Netherlands),<$10,000 from Michael-van Vloten Fonds (Rotterdam, the Netherlands), and an amount between $10,000-100,000 from Prins Bernhard Cultuurfonds (Amsterdam, the Netherlands) and Flinders Foundation (Adelaide, Australia).

References

  1. Best MJ, Aziz KT, Wilckens JH, McFarland EG, Srikumaran U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. J Shoulder Elbow Surg 2021;30:1159-66. https://doi.org/10.1016/j.jse.2020.08.010
  2. Dillon MT, Prentice HA, Burfeind WE, Chan PH, Navarro RA. The increasing role of reverse total shoulder arthroplasty in the treatment of proximal humerus fractures. Injury 2019;50:676-80. https://doi.org/10.1016/j.injury.2019.01.034
  3. Grammont PM, Baulot E. Delta shoulder prosthesis for rotator cuff rupture. Orthopedics 1993;16:65-8. https://doi.org/10.3928/0147-7447-19930101-11
  4. Cheung E, Willis M, Walker M, Clark R, Frankle MA. Complications in reverse total shoulder arthroplasty. J Am Acad Orthop Surg 2011;19:439-49. https://doi.org/10.5435/00124635-201107000-00007
  5. Clark JC, Ritchie J, Song FS, et al. Complication rates, dislocation, pain, and postoperative range of motion after reverse shoulder arthroplasty in patients with and without repair of the subscapularis. J Shoulder Elbow Surg 2012;21:36-41. https://doi.org/10.1016/j.jse.2011.04.009
  6. Edwards TB, Williams MD, Labriola JE, Elkousy HA, Gartsman GM, O'Connor DP. Subscapularis insufficiency and the risk of shoulder dislocation after reverse shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:892-6. https://doi.org/10.1016/j.jse.2008.12.013
  7. Walch G, Bacle G, Ladermann A, Nove-Josserand L, Smithers CJ. Do the indications, results, and complications of reverse shoulder arthroplasty change with surgeon's experience. J Shoulder Elbow Surg 2012;21:1470-7. https://doi.org/10.1016/j.jse.2011.11.010
  8. Westermann RW, Pugely AJ, Martin CT, Gao Y, Wolf BR, Hettrich CM. Reverse shoulder arthroplasty in the United States: a comparison of national volume, patient demographics, complications, and surgical indications. Iowa Orthop J 2015;35:1-7.
  9. Alentorn-Geli E, Samitier G, Torrens C, Wright TW. Reverse shoulder arthroplasty. Part 2: systematic review of reoperations, revisions, problems, and complications. Int J Shoulder Surg 2015;9:60-7. https://doi.org/10.4103/0973-6042.154771
  10. Lawrence C, Williams GR, Namdari S. Influence of glenosphere design on outcomes and complications of reverse arthroplasty: a systematic review. Clin Orthop Surg 2016;8:288-97. https://doi.org/10.4055/cios.2016.8.3.288
  11. Levine WN, Anakwenze O, Frankle MA, Keener JD, Sanchez-Sotelo J, Tashjian RZ. My reverse has failed: top five complications and how to manage them. Instr Course Lect 2023;72:175-200.
  12. Rojas J, Choi K, Joseph J, Srikumaran U, McFarland EG. Aseptic glenoid baseplate loosening after reverse total shoulder arthroplasty: a systematic review and meta-analysis. JBJS Rev 2019;7:e7.
  13. Zumstein MA, Pinedo M, Old J, Boileau P. Problems, complications, reoperations, and revisions in reverse total shoulder arthroplasty: a systematic review. J Shoulder Elbow Surg 2011;20:146-57. https://doi.org/10.1016/j.jse.2010.08.001
  14. Austin L, Zmistowski B, Chang ES, Williams GR. Is reverse shoulder arthroplasty a reasonable alternative for revision arthroplasty. Clin Orthop Relat Res 2011;469:2531-7. https://doi.org/10.1007/s11999-010-1685-x
  15. Saltzman BM, Chalmers PN, Gupta AK, Romeo AA, Nicholson GP. Complication rates comparing primary with revision reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2014;23:1647-54. https://doi.org/10.1016/j.jse.2014.04.015
  16. Wall B, Nove-Josserand L, O'Connor DP, Edwards TB, Walch G. Reverse total shoulder arthroplasty: a review of results according to etiology. J Bone Joint Surg Am 2007;89:1476-85.
  17. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009;6:e1000100.
  18. Critical Appraisal Skills Programme (CASP). CASP cohort study checklist [Internet]. CASP; 2022 [cited 2023 Mar 29]. Available from: https://casp-uk.net/casp-tools-checklists/
  19. Wilke J, Krause F, Niederer D, et al. Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat 2015;226:440-6. https://doi.org/10.1111/joa.12292
  20. Hopkins AR, Hansen UN, Bull AM, Emery R, Amis AA. Fixation of the reversed shoulder prosthesis. J Shoulder Elbow Surg 2008;17:974-80. https://doi.org/10.1016/j.jse.2008.04.012
  21. Basat HC, Kirkayak L. Stress effect of screw insertion angle for base plate fixation on humeral spacer in reverse shoulder arthroplasty. J Biomater Tissue Eng 2018;8:1535-42. https://doi.org/10.1166/jbt.2018.1906
  22. DiStefano JG, Park AY, Nguyen TQ, Diederichs G, Buckley JM, Montgomery WH. Optimal screw placement for base plate fixation in reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2011;20:467-76. https://doi.org/10.1016/j.jse.2010.06.001
  23. Humphrey CS, Kelly JD, Norris TR. Optimizing glenosphere position and fixation in reverse shoulder arthroplasty, Part Two: the three-column concept. J Shoulder Elbow Surg 2008;17:595-601. https://doi.org/10.1016/j.jse.2008.05.038
  24. Abdic S, Lockhart J, Alnusif N, Johnson JA, Athwal GS. Glenoid baseplate screw fixation in reverse shoulder arthroplasty: does locking screw position and orientation matter. J Shoulder Elbow Surg 2021;30:1207-13. https://doi.org/10.1016/j.jse.2020.08.009
  25. Lung TS, Cruickshank D, Grant HJ, Rainbow MJ, Bryant TJ, Bicknell RT. Factors contributing to glenoid baseplate micro-motion in reverse shoulder arthroplasty: a biomechanical study. J Shoulder Elbow Surg 2019;28:648-53. https://doi.org/10.1016/j.jse.2018.09.012
  26. Yang CC, Lu CL, Wu CH, et al. Stress analysis of glenoid component in design of reverse shoulder prosthesis using finite element method. J Shoulder Elbow Surg 2013;22:932-9. https://doi.org/10.1016/j.jse.2012.09.001
  27. Denard PJ, Lederman E, Parsons BO, Romeo AA. Finite element analysis of glenoid-sided lateralization in reverse shoulder arthroplasty. J Orthop Res 2017;35:1548-55. https://doi.org/10.1002/jor.23394
  28. Elwell J, Choi J, Willing R. Quantifying the competing relationship between adduction range of motion and baseplate micromotion with lateralization of reverse total shoulder arthroplasty. J Biomech 2017;52:24-30. https://doi.org/10.1016/j.jbiomech.2016.11.053
  29. Roche C, DiGeorgio C, Yegres J, et al. Impact of screw length and screw quantity on reverse total shoulder arthroplasty glenoid fixation for 2 different sizes of glenoid baseplates. JSES Open Access 2019;3:296-303. https://doi.org/10.1016/j.jses.2019.08.006
  30. Hoenig MP, Loeffler B, Brown S, et al. Reverse glenoid component fixation: is a posterior screw necessary. J Shoulder Elbow Surg 2010;19:544-9. https://doi.org/10.1016/j.jse.2009.10.006
  31. James J, Allison MA, Werner FW, et al. Reverse shoulder arthroplasty glenoid fixation: is there a benefit in using four instead of two screws. J Shoulder Elbow Surg 2013;22:1030-6. https://doi.org/10.1016/j.jse.2012.11.006
  32. Kennon JC, Lu C, McGee-Lawrence ME, Crosby LA. Scapula fracture incidence in reverse total shoulder arthroplasty using screws above or below metaglene central cage: clinical and biomechanical outcomes. J Shoulder Elbow Surg 2017;26:1023-30. https://doi.org/10.1016/j.jse.2016.10.018
  33. Routman HD, Simovitch RW, Wright TW, Flurin PH, Zuckerman JD, Roche CP. Acromial and scapular fractures after reverse total shoulder arthroplasty with a medialized glenoid and lateralized humeral implant: an analysis of outcomes and risk factors. J Bone Joint Surg Am 2020;102:1724-33. https://doi.org/10.2106/JBJS.19.00724
  34. Lopiz Y, Galan-Olleros M, Rodriguez-Rodriguez L, Garcia-Fernandez C, Marco F. Radiographic changes around the glenoid component in primary reverse shoulder arthroplasty at mid-term follow-up. J Shoulder Elbow Surg 2021;30:e378-91. https://doi.org/10.1016/j.jse.2020.10.007
  35. Codsi MJ, Bennetts C, Powell K, Iannotti JP. Locations for screw fixation beyond the glenoid vault for fixation of glenoid implants into the scapula: an anatomic study. J Shoulder Elbow Surg 2007;16:S84-9. https://doi.org/10.1016/j.jse.2006.07.009
  36. Hart ND, Clark JC, Wade Krause FR, Kissenberth MJ, Bragg WE, Hawkins RJ. Glenoid screw position in the Encore Reverse Shoulder Prosthesis: an anatomic dissection study of screw relationship to surrounding structures. J Shoulder Elbow Surg 2013;22:814-20. https://doi.org/10.1016/j.jse.2012.08.013
  37. Eroglu ON, Husemoglu B, Basci O, Ozkan M, Havitcioglu H, Hapa O. Scapular spine base fracture with long outside-in superior or posterior screws with reverse shoulder arthroplasty. Clin Shoulder Elb 2021;24:141-6.
  38. Otto RJ, Virani NA, Levy JC, Nigro PT, Cuff DJ, Frankle MA. Scapular fractures after reverse shoulder arthroplasty: evaluation of risk factors and the reliability of a proposed classification. J Shoulder Elbow Surg 2013;22:1514-21. https://doi.org/10.1016/j.jse.2013.02.007
  39. Cho CH, Rhee YG, Yoo JC, et al. Incidence and risk factors of acromial fracture following reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:57-64. https://doi.org/10.1016/j.jse.2020.04.031
  40. Jang YH, Oh SY, Kim SH. Three-dimensional analysis of baseplate screw penetration in reverse total shoulder arthroplasty: risk of iatrogenic suprascapular neuropathy by screw violation. J Shoulder Elbow Surg 2022;31:940-7. https://doi.org/10.1016/j.jse.2021.10.024
  41. Chebli C, Huber P, Watling J, Bertelsen A, Bicknell RT, Matsen F. Factors affecting fixation of the glenoid component of a reverse total shoulder prothesis. J Shoulder Elbow Surg 2008;17:323-7. https://doi.org/10.1016/j.jse.2007.07.015
  42. Harman M, Frankle M, Vasey M, Banks S. Initial glenoid component fixation in "reverse" total shoulder arthroplasty: a biomechanical evaluation. J Shoulder Elbow Surg 2005;14:162S-167S. https://doi.org/10.1016/j.jse.2004.09.030
  43. Formaini NT, Everding NG, Levy JC, Santoni BG, Nayak AN, Wilson C. Glenoid baseplate fixation using hybrid configurations of locked and unlocked peripheral screws. J Orthop Traumatol 2017;18:221-8. https://doi.org/10.1007/s10195-016-0438-3
  44. Torkan LF, Bryant JT, Bicknell RT, Ploeg HL. Central fixation element type and length affect glenoid baseplate micromotion in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2022;31:1385-92. https://doi.org/10.1016/j.jse.2022.01.120
  45. Chae SW, Lee H, Kim SM, Lee J, Han SH, Kim SY. Primary stability of inferior tilt fixation of the glenoid component in reverse total shoulder arthroplasty: a finite element study. J Orthop Res 2016;34:1061-8. https://doi.org/10.1002/jor.23115
  46. Gutierrez S, Greiwe RM, Frankle MA, Siegal S, Lee WE. Biomechanical comparison of component position and hardware failure in the reverse shoulder prosthesis. J Shoulder Elbow Surg 2007;16:S9-S12. https://doi.org/10.1016/j.jse.2005.11.008
  47. Ingrassia T, Nigrelli V, Ricotta V, et al. A new method to evaluate the influence of the glenosphere positioning on stability and range of motion of a reverse shoulder prosthesis. Injury 2019;50 Suppl 2:S12-7. https://doi.org/10.1016/j.injury.2019.01.039
  48. Patel M, Martin JR, Campbell DH, Fernandes RR, Amini MH. Inferior tilt of the glenoid leads to medialization and increases impingement on the scapular neck in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:1273-81. https://doi.org/10.1016/j.jse.2020.09.023
  49. Rhee SM, Lee JD, Park YB, Yoo JC, Oh JH. Prognostic radiological factors affecting clinical outcomes of reverse shoulder arthroplasty in the Korean population. Clin Orthop Surg 2019;11:112-9. https://doi.org/10.4055/cios.2019.11.1.112
  50. Kempton LB, Balasubramaniam M, Ankerson E, Wiater JM. A radiographic analysis of the effects of glenosphere position on scapular notching following reverse total shoulder arthroplasty. J Shoulder Elbow Surg 2011;20:968-74. https://doi.org/10.1016/j.jse.2010.11.026
  51. Bechtold DA, Ganapathy PK, Aleem AW, Chamberlain AM, Keener JD. The relationship between glenoid inclination and instability following primary reverse shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:e370-7. https://doi.org/10.1016/j.jse.2020.09.037
  52. Mahendraraj KA, Shields MV, Grubhofer F, Golenbock SW, Jawa A. Reassessing glenoid inclination in reverse total shoulder arthroplasty with glenosphere lateralization. Bone Joint J 2021;103-:360-5. https://doi.org/10.1302/0301-620X.103B2.BJJ-2020-0843.R1
  53. Berthold DP, Morikawa D, Muench LN, et al. Negligible correlation between radiographic measurements and clinical outcomes in patients following primary reverse total shoulder arthroplasty. J Clin Med 2021;10:809.
  54. Randelli P, Randelli F, Arrigoni P, et al. Optimal glenoid component inclination in reverse shoulder arthroplasty: how to improve implant stability. Musculoskelet Surg 2014;98 Suppl 1:15-8. https://doi.org/10.1007/s12306-014-0324-1
  55. Tashjian RZ, Martin BI, Ricketts CA, Henninger HB, Granger EK, Chalmers PN. Superior baseplate inclination is associated with instability after reverse total shoulder arthroplasty. Clin Orthop Relat Res 2018;476:1622-9. https://doi.org/10.1097/CORR.0000000000000340
  56. Fukuta S, Wada K, Higashino K, Sairyo K, Tsuruo Y. Optimal baseplate position in reverse shoulder arthroplasty in small-stature Japanese women: a cadaveric study. J Med Invest 2021;68:175-80. https://doi.org/10.2152/jmi.68.175
  57. Huish EG, Athwal GS, Neyton L, Walch G. Adjusting implant size and position can improve internal rotation after reverse total shoulder arthroplasty in a three-dimensional computational model. Clin Orthop Relat Res 2021;479:198-204. https://doi.org/10.1097/CORR.0000000000001526
  58. Jeong HJ, Jeong MG, Kim SW, et al. Optimal insertion site of glenoid baseplate in reverse total shoulder arthroplasty: anatomical simulation using three dimensional image processing software. Int Orthop 2021;45:3171-7. https://doi.org/10.1007/s00264-021-05235-7
  59. Pauzenberger L, Dwyer C, Obopilwe E, et al. Influence of glenosphere and baseplate parameters on glenoid bone strains in reverse shoulder arthroplasty. BMC Musculoskelet Disord 2019;20:587.
  60. Roche CP, Diep P, Hamilton MA, Flurin PH, Routman HD. Comparison of bone removed with reverse total shoulder arthroplasty. Bull Hosp Jt Dis (2013) 2013;71 Suppl 2:S36-40.
  61. Tashiro E, Takeuchi N, Kozono N, Nabeshima A, Teshima E, Nakashima Y. Risk of penetration of the baseplate peg in reverse total shoulder arthroplasty for an Asian population. Int Orthop 2022;46:1063-71. https://doi.org/10.1007/s00264-022-05328-x
  62. Wright J, Potts C, Smyth MP, Ferrara L, Sperling JW, Throckmorton TW. A quantitative analysis of the effect of baseplate and glenosphere position on deltoid lengthening in reverse total shoulder arthroplasty. Int J Shoulder Surg 2015;9:33-7. https://doi.org/10.4103/0973-6042.154752
  63. Zhang M, Junaid S, Gregory T, Hansen U, Cheng CK. Effect of baseplate positioning on fixation of reverse total shoulder arthroplasty. Clin Biomech (Bristol, Avon) 2019;62:15-22. https://doi.org/10.1016/j.clinbiomech.2018.12.021
  64. Feeley BT, Zhang AL, Barry JJ, et al. Decreased scapular notching with lateralization and inferior baseplate placement in reverse shoulder arthroplasty with high humeral inclination. Int J Shoulder Surg 2014;8:65-71. https://doi.org/10.4103/0973-6042.140112
  65. Simovitch RW, Zumstein MA, Lohri E, Helmy N, Gerber C. Predictors of scapular notching in patients managed with the Delta III reverse total shoulder replacement. J Bone Joint Surg Am 2007;89:588-600. https://doi.org/10.2106/JBJS.F.00226
  66. Roche CP, Marczuk Y, Wright TW, et al. Scapular notching and osteophyte formation after reverse shoulder replacement: Radiological analysis of implant position in male and female patients. Bone Joint J 2013;95:530-5. https://doi.org/10.1302/0301-620X.95B4.30442
  67. Kim MS, Rhee YG, Oh JH, Yoo JC, Noh KC, Shin SJ. Clinical and radiologic outcomes of small glenoid baseplate in reverse total shoulder arthroplasty: a prospective multicenter study. Clin Orthop Surg 2022;14:119-27. https://doi.org/10.4055/cios20301
  68. Collotte P, Bercik M, Vieira TD, Walch G. Long-term reverse total shoulder arthroplasty outcomes: the effect of the inferior shifting of glenoid component fixation. Clin Orthop Surg 2021;13:505-12. https://doi.org/10.4055/cios20245
  69. Duethman NC, Aibinder WR, Nguyen NT, Sanchez-Sotelo J. The influence of glenoid component position on scapular notching: a detailed radiographic analysis at midterm follow-up. JSES Int 2020;4:144-50. https://doi.org/10.1016/j.jses.2019.11.004
  70. Favre P, Sussmann PS, Gerber C. The effect of component positioning on intrinsic stability of the reverse shoulder arthroplasty. J Shoulder Elbow Surg 2010;19:550-6. https://doi.org/10.1016/j.jse.2009.11.044
  71. Permeswaran VN, Caceres A, Goetz JE, Anderson DD, Hettrich CM. The effect of glenoid component version and humeral polyethylene liner rotation on subluxation and impingement in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2017;26:1718-25. https://doi.org/10.1016/j.jse.2017.03.027
  72. Friedman RJ, Sun S, She X, Esposito J, Eichinger J, Yao H. Effects of increased retroversion angle on glenoid baseplate fixation in reverse total shoulder arthroplasty: a finite element analysis. Semin Arthroplasty 2021;31:209-16. https://doi.org/10.1053/j.sart.2020.11.014
  73. Stephens BF, Hebert CT, Azar FM, Mihalko WM, Throckmorton TW. Optimal baseplate rotational alignment for locking-screw fixation in reverse total shoulder arthroplasty: a three-dimensional computer-aided design study. J Shoulder Elbow Surg 2015;24:1367-71. https://doi.org/10.1016/j.jse.2015.01.012
  74. Roche CP, Stroud NJ, Flurin PH, Wright TW, Zuckerman JD, DiPaola MJ. Reverse shoulder glenoid baseplate fixation: a comparison of flat-back versus curved-back designs and oval versus circular designs with 2 different offset glenospheres. J Shoulder Elbow Surg 2014;23:1388-94. https://doi.org/10.1016/j.jse.2014.01.050
  75. James J, Huffman KR, Werner FW, Sutton LG, Nanavati VN. Does glenoid baseplate geometry affect its fixation in reverse shoulder arthroplasty. J Shoulder Elbow Surg 2012;21:917-24. https://doi.org/10.1016/j.jse.2011.04.017
  76. Chae SW, Kim SY, Lee H, Yon JR, Lee J, Han SH. Effect of baseplate size on primary glenoid stability and impingement-free range of motion in reverse shoulder arthroplasty. BMC Musculoskelet Disord 2014;15:417.
  77. Irlenbusch U, Kohut G. Evaluation of a new baseplate in reverse total shoulder arthroplasty: comparison of biomechanical testing of stability with roentgenological follow up criteria. Orthop Traumatol Surg Res 2015;101:185-90. https://doi.org/10.1016/j.otsr.2014.11.015
  78. Athwal GS, Faber KJ. Outcomes of reverse shoulder arthroplasty using a mini 25-mm glenoid baseplate. Int Orthop 2016;40:109-13. https://doi.org/10.1007/s00264-015-2945-x
  79. Yang Y, Zuo J, Liu T, et al. Glenoid morphology and the safe zone for protecting the suprascapular nerve during baseplate fixation in reverse shoulder arthroplasty. Int Orthop 2018;42:587-93. https://doi.org/10.1007/s00264-017-3646-4
  80. Molony DC, Cassar Gheiti AJ, Kennedy J, Green C, Schepens A, Mullett HJ. A cadaveric model for suprascapular nerve injury during glenoid component screw insertion in reverse-geometry shoulder arthroplasty. J Shoulder Elbow Surg 2011;20:1323-7. https://doi.org/10.1016/j.jse.2011.02.014
  81. Vance DD, O'Donnell JA, Baldwin EL, et al. Risk of suprascapular nerve injury during glenoid baseplate fixation for reverse total shoulder arthroplasty: a cadaveric study. J Shoulder Elbow Surg 2021;30:532-7. https://doi.org/10.1016/j.jse.2020.07.008
  82. Chow MJ, Zhang Y. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J Surg Res 2011;171:434-42. https://doi.org/10.1016/j.jss.2010.04.007
  83. Hohmann E, Keough N, Glatt V, Tetsworth K, Putz R, Imhoff A. The mechanical properties of fresh versus fresh/frozen and preserved (Thiel and Formalin) long head of biceps tendons: a cadaveric investigation. Ann Anat 2019;221:186-91. https://doi.org/10.1016/j.aanat.2018.05.002
  84. Venkatasubramanian RT, Grassl ED, Barocas VH, Lafontaine D, Bischof JC. Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann Biomed Eng 2006;34:823-32. https://doi.org/10.1007/s10439-005-9044-x
  85. Formaini NT, Everding NG, Levy JC, et al. The effect of glenoid bone loss on reverse shoulder arthroplasty baseplate fixation. J Shoulder Elbow Surg 2015;24:e312-9. https://doi.org/10.1016/j.jse.2015.05.045
  86. Jasty M, Bragdon C, Burke D, O'Connor D, Lowenstein J, Harris WH. In vivo skeletal responses to porous-surfaced implants subjected to small induced motions. J Bone Joint Surg Am 1997;79:707-14. https://doi.org/10.2106/00004623-199705000-00010