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The aim of this systematic review was to collect evidence on the following 10 technical aspects of glenoid baseplate fixation in reverse total
shoulder arthroplasty (rTSA): screw insertion angles; screw orientation; screw quantity; screw length; screw type; baseplate tilt; baseplate
position; baseplate version and rotation; baseplate design; and anatomical safe zones. Five literature libraries were searched for eligible clini-
cal, cadaver, biomechanical, virtual planning, and finite element analysis studies. Studies including patients >16 years old in which at least
one of the ten abovementioned technical aspects was assessed were suitable for analysis. We excluded studies of patients with: glenoid bone
loss; bony increased offset-reversed shoulder arthroplasty; rTSA with bone grafts; and augmented baseplates. Quality assessment was per-
formed for each included study. Sixty-two studies were included, of which 41 were experimental studies (13 cadaver, 10 virtual planning, 11
biomechanical, and 7 finite element studies) and 21 were clinical studies (12 retrospective cohorts and 9 case-control studies). Overall, the
quality of included studies was moderate or high. The majority of studies agreed upon the use of a divergent screw fixation pattern, fixation
with four screws (to reduce micromotions), and inferior positioning in neutral or anteversion. A general consensus was not reached on the
other technical aspects. Most surgical aspects of baseplate fixation can be decided without affecting fixation strength. There is not a single
strategy that provides the best outcome. Therefore, guidelines should cover multiple surgical options that can achieve adequate baseplate
fixation.
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INTRODUCTION (rTSA) has increased exponentially since the introduction of the
first rTSA by Grammont et al. in 1987 [1-3]. Despite innovations

The worldwide incidence of reverse total shoulder arthroplasty  in surgical technique and implant designs, rTSA-related compli-
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cations occur in 19%-68% of patients [4-8]. The incidence of
baseplate loosening following rTSA ranges from 1.2% to 11.7%,
and it usually requires revision surgery [9-13]. Revision proce-
dures following rTSA are associated with higher complication
rates, worse functional outcomes, and decreased patient satisfac-
tion compared to those of primary rTSA [13-16]. Therefore, it is
important to prevent revision procedures in order to improve pa-
tient outcomes. However, achieving optimal glenoid baseplate
fixation can be challenging. Several screw- and baseplate-related
surgical fixation aspects, such as screw placement and baseplate
characteristics, are believed to be critical for achieving optimal
glenoid baseplate fixation.

Although various studies have assessed screw- and base-
plate-related surgical fixation aspects in rTSA, there is still no
consensus on how to achieve optimal glenoid-implant fixation in
rTSA. Insight into optimizing glenoid-implant fixation in rTSA is
important to reduce aseptic baseplate loosening requiring revision
surgery, scapular notching, postoperative fractures, and supras-
capular nerve (SSN) injury. Optimizing glenoid-implant fixation
in rTSA may also improve patient outcomes. This review was per-
formed with the goal of collecting the available evidence on the
following ten technical aspects of baseplate fixation in rTSA:
screw insertion angles; screw orientation; screw quantity; screw
length; screw type; baseplate tilt; baseplate position; baseplate ver-
sion and rotation; baseplate design; and anatomical safe zones.

METHODS

This systematic review process followed the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines and was registered in the International Prospective
Register of Systematic Reviews (identification number 245912)
[17]. Ethical approval is not required for this type of study under
Dutch law.

Search Strategy

The literature search was conducted in PubMed, Embase, Web of
Science, Cochrane Central Library, and Emcare using a system-
atic search strategy (Supplementary Material 1) created by a li-
brarian (JWS). The articles were selected from January 2000 to
July 2022. The list of references was imported into EndNote (ver-
sion X9) to remove duplicate articles. The references were subse-
quently exported to the web application Rayyan for study selec-

tion.

Study Selection
Three authors (RWAS, LAH, and RCB) independently screened
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the titles and abstracts before assessing the full texts for eligibility.
Any discrepancies were resolved by discussion between the au-
thors. Studies were included according to the following eligibility
criteria: (1) inclusion of least three patients, all of whom were
>16 years old; (2) analysis of at least one baseplate fixation as-
pect (screw insertion angle, screw orientation, screw quantity,
screw length, screw type, baseplate tilt, baseplate position, base-
plate version and rotation, anatomical safe zones) in rTSA; (3)
data regarding clinical outcomes, biomechanical outcomes, and/
or anatomical outcomes. We excluded studies of patients with: (1)
glenoid bone loss (Walch type =B1); (2) bony increased off-
set-reversed shoulder arthroplasty; (3) rTSA with bone grafts;
and (4) augmented baseplates. In addition, studies were excluded
if the full text was unavailable, if data were not extractable or if it
was any of the following study types: systematic review, me-
ta-analysis, conference abstract, case report (defined as inclusion
of less than three patients), expert opinion, or animal study. Fi-
nally, the reference lists of the retrieved articles were reviewed for

additional articles (citation snowballing).

Critical Appraisal and Data Extraction

Methodological quality of the clinical and cadaver studies was
appraised using the Critical Appraisal Skills Program (CASP)
[18] and the Quality Appraisal for Cadaveric Studies (QUACS)
checklists [19]. The CASP checklist was classified into low (<8
points) and high (=8 points) levels of quality. The QUACS
checklist was classified into poor (<6 points), moderate (7-9
points), and good (=10 points) levels of quality. Quality assess-
ments, authors, year of publication, and data extraction of all in-
cluded studies were independently extracted by three authors
(RWAS, LAH, and RCB). Any discrepancies were resolved by

discussion between the authors.

Statistical Analysis

Data was presented using descriptive statistics. Outcomes were
not synthesized, as it was inappropriate to generate pooled effect
sizes due to the between-study heterogeneity in methodology
and outcomes. A brief summary of the reviewed material was

presented after each section.

RESULTS

Literature Search

The literature search (Supplementary Material 1) identified 3,216
records. After removing duplicates, the titles and abstracts of
2,238 articles were screened. Thereafter, 161 full texts were as-
sessed. Of these, 60 studies fulfilled the inclusion criteria. Anoth-
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er two studies were identified by reference checking; therefore, a
total of 62 studies were included in the quality assessment (Fig.
1). The quality of clinical studies was low in 5 and high in 16
studies (Supplementary Material 2). The quality of cadaver stud-
ies was poor in zero, moderate in nine, and good in four studies
(Supplementary Material 3). As zero studies were excluded after
quality assessment, all 62 studies were suitable for analysis, in-
cluding: 41 experimental studies (13 cadaver, 10 virtual planning,
11 biomechanical, and 7 finite element studies) and 21 clinical

studies (12 retrospective cohort and 9 case-control studies).

Screw Insertion Angle

A finite element study in which four different diverging screw in-
sertion angles (0°, 10°, 20°, and 30°) were tested showed that an
increasing screw insertion angle resulted in reductions in the
baseplate micromotions: 90-110 pm (screw insertion angle of 0°)
and 48-59 um (screw insertion angle of 30°) [20]. Meanwhile, a
finite element study in which five different screw insertion angles
(0°, 10°, 17°, 15° and 34°) were analyzed showed that screw in-
sertion angles of 17° provided the most optimal stress distribu-

tion on the humeral spacer [21]. A virtual planning study deter-

] [ Screening ] [Identiﬁcation]

mined the optimal screw insertion angle according to two sce-
narios, as follows: (1) entire intraosseous screw trajectory, exiting
in a “safe anatomical region” (i.e., avoiding injury to the SSN,
which runs between the 2- and 8-oclock positions with the right
shoulder as reference); (2) in-out-in screw trajectory with pene-
tration in the thickest cortical region regardless of anatomical
structures [22]. The optimal screw insertion angles, according to
this study, are summarized in Table 1. Additionally, because there
are no important neurovascular structures located at the inferior
scapular pillar, the authors emphasized that inferior screws
should be angled into the inferior scapular pillar. The angles of
the posterior and superior screws highly depend on surgeons’
preferences. For instance, superior screws could be directed lat-
erally or inferiorly to the suprascapular notch, whereas posterior
screws could be angled toward the lateral scapular spine area or
to thin cortical areas (provided that the length is short). Com-
pared with scenario 2, similar screw insertion angles for the infe-
rior screws were found in a cadaver study (n=10), in which vari-
able and fixed baseplates were used (Tables 1 and 2) [23]. To
summarize, there were considerable differences in optimal screw

insertion angles described in these experimental studies.
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90

= 161 Full-text articles assessed for

= eligibility

=

o

A

— 2 Additional records identified through R 60 Studies included in qualitative
PR forward and backward citation tracking g synthesis

=)

v

=)

=

o

<

= v

62 Studies included in systematic review

https://doi.org/10.5397/cise.2023.00493



Clin Shoulder Elbow 2024;27(1):88-107

Table 1. Optimal screw insertion angles in degrees

First author (year) Definition Superior screw Posterior screw Anterior screw Inferior screw
DiStefano (2011) [22]  Intraosseous through 9+3 (S/T) -29+8(S/1) -16+5 (S/T) -16+7 (S/T)
cortical bone and ex- -2+5(A/P) 3+7(A/P) -14+4 (A/P) 5+4 (A/P)
its a “safe region” 2846 (S/1) 23+4(S/1) -16%5 (S/1) -19+6 (S/1)
(based on anatomical 14, 6 (o/p) ~3+6(A/P) ~14+4 (A/P) 44 (A/P)
structures) Penetrates
the thickest cortical
region regardless of
anatomical structures
Humphrey (2008) [23] Maximized screw 19 (S),5 (1) 14 (1), 7 (A)
length, accomplished
far cortical fixation,
and attained screw
purchase in good
bone stock
Variable-angle base- 20(S), 20 (I) 20 (1), 20 (A)
plate; fixed-angle
baseplate
Values are presented as mean + standard deviation.
S: superior, I: inferior, A: anterior, P: posterior.
Table 2. Overview of included studies for screw insertion angle
First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Humphrey (2008) [23] Cadaver (n=10) Aequalis (Tornier) - - 4 Screws - Table 1
Basat (2018) [21] Finite element  Delta Xtend (Depuy) 36-mm diameter 6-mm diameter, 4 Screws, - Screw insertion
13-mm length 4.5-mm diameter, angle of 17°
24-mm length provided the
optimal stress
distribution on
the humeral
spacer.
Hopkins (2008) [20]  Finite element ~ Delta III (Depuy), - - 4 Screws, 756 N axial Increasing the
RSP neutral 3.5-or 5-mmdi- superior  screw insertion
(Encore Medical), ameter, 16- or angle resulted
RSP reduced 30-mm length in less BP mo-
(Encore Medical) tion.
DiStefano (2011) [22] Virtual planning Aequalis (Tornier)  29-mm diameter 8-mm diameter 4 Screws - Table 1

-: not reported, BP: baseplate.

Screw Orientation

A cadaver study (n=20) reported no significant differences in
baseplate micromotions measured by axial eccentric loading (0-
300 N for 600 cycles) between the baseplates secured with diver-
gent or parallel oriented screws (2.0 um, standard error: 0.7 vs.
4.0 um, standard error: 1.5, respectively) [24]. Additionally, a
biomechanical study using cycling loading (500 N for 1,000 cy-
cles) observed no significant differences in baseplate micromo-
tions among baseplates secured with neutral or divergent orient-
ed screws, as follows: inferior 247 +22 and 193 +23 pm; superior
121+17 and 108 + 18 pm; anterior 180+ 16 and 153 + 17 pm; poste-
rior 188+22 and 148+23 pum [25]. Contrarily, a finite element

https://doi.org/10.5397/cise.2023.00493

study showed that baseplates secured with divergent oriented
screws demonstrated less baseplate micromotions than did those
secured with convergent oriented screws [26]. Likewise, another fi-
nite element study using compressive and shear load of 750 N
demonstrated that divergent oriented screw fixation resulted in less
baseplate stress and displacement than did baseplates secured with
convergent or parallel oriented screws (Table 3) [27].

In summary, two out of four experimental studies suggested
that baseplates should be secured with divergent oriented screws.
In contrast, two experimental studies found no differences in
baseplates micromotions while using different screw orienta-

tions.
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Table 3. Overview of included studies for screw orientation

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Lung (2019) [25] Biomechanical = Delta Xtend - 13.5- or 23.5-mm 2 or 4 Screws, 18- 500 N for 1,000  Divergent versus neutral
(DePuy) length or 36-mm cycles screw orientation: no
length differences in base
plate motion
Abdic (2021) Cadaver (n=20) Aequalis 29-mm di- 8-mm diameter 4 Screws, 4.5- 0-300 N for 600 Divergent versus parallel
[24] (Tornier) ameter mm diameter cycles screw orientation: no
differences in base
plate motion
Denard (2017)  Finite element  Univers Revers 24-mm di- 6.5-mm diame- 2 Screws, Compressive and Divergent screws result-

[27] (Arthrex) ameter ter, 15-mm 4.4-mm diameter, shearload 750N ed in less base plate
length 24-mm length stress and displace-
ment compared to
parallel and convergent
orientations.

Yang (2013) [26] Finite element  Aequalis -

(Tornier)

Divergent screw orienta-
tion resulted in less
base plate motion
compared to conver-
gent orientations.

-: not reported.

Screw Quantity

A cadaver study (n=4) reported reduced baseplate micromo-
tions among baseplates secured with four screws when compared
to those secured with two screws (18.3+5.9 vs. 35.0+14.9 um;
P=0.01, respectively) [28]. Additionally, a biomechanical study
in which baseplates were constructed with two, four, or six screws
reported more displacement both pre- and post-cyclic loading
(750 N for 10,000 cycles) in baseplates secured with two screws
than in baseplates secured with four or six screws (two screws
116 36 and 125+ 44 pm; four screws 82 +22 and 91 23 um; six
screws 92+ 20 and 108 £42 um, pre- and post-cyclic loading, re-
spectively). However, no differences were observed between four
versus six screws (P=0.18 and P=0.18, pre- and post-cyclic
loading, respectively) [29]. Furthermore, a cadaver study (n=10)
analyzed the added value of the posterior screw by measuring the
amount of vertical displacement of the glenoid component
during cyclic loading (750 N for 50,000 cycles); this group found
a three-fold higher rate of glenoid loosening in baseplates with-
out posterior screws compared to those with posterior screws
[30]. Contrarily, no significant differences in baseplate displace-
ment were identified in another cadaver study (n=12) using cy-
cling loading (650-1,000 N for 100 cycles in superior directions
followed by 100 cycles in anterior-posterior directions). This
group was primarily looking for mean differences in displace-
ments between two and four screws constructs of: anterior 42
um; posterior 41 um; superior 13 pm; and inferior 14 um [31].

Similar outcomes were reported in a biomechanical study using
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cyclic loading of 500 N for 1,000 cycles. This group found mean
displacements between two and four screws, respectively, as fol-
lows: inferior 235+23 and 205+ 22 um; superior 130+ 18 and
99+ 17 um; anterior 180+ 16 and 155+ 16 um; posterior 187 +23
and 149 +22 um [25].

A case-control study (n=3,180) including a biomechanical
model using compressive loading (10 mm/min) reported that su-
perior screw insertion within four-screw constructs was associat-
ed with: a higher incidence of scapula body fractures (4.4% vs.
0.0%, superior screws yes/no, respectively); and a lower load to
failure (1,077 N vs. 1,970 N, superior screws yes/no, respectively)
[32]. Similar findings were reported in a case-control study
(n=4,125) with a minimum follow-up of 2 years. In this study,
patients with acromial and/or scapular spine fractures had more
baseplate screws than did those without fractures (4.05+0.51 vs.
3.83+0.79, respectively; P=0.02) [33]. In contrast, another retro-
spective study (n=105) showed that utilizing three or four screws
(vs. only two screws) did not increase the odds of minor or major
radiographic changes (Table 4) [34].

To summarize, three out of five experimental studies demon-
strated that baseplates should be secured with four screws. How-
ever, two out of three clinical studies reported higher occurrences
of scapular and/or acromial fractures as the number of baseplate

screws increases.

Screw Length

Five experimental studies analyzed the optimal screw lengths
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Table 4. Overview of included studies for screw quantity

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Lung (2019) [25]  Biomechanical Delta Xtend - 13.5- or 23.5-mm 2 or 4 Screws; 500 N for 1,000  No differences in
(DePuy) length 18-or36-mm  cycles base plate motion
length between 2- and
4-screw constructs
Roche (2019) [29] Biomechanical Equinoxe 25- or 24-mm - 2,4, 0r 6 Screws, 750 N for 10,000 Using 4 or 6 instead
(Exactech) diameter 4.5-mm diameter, cycles of 2 screws resulted
18- or 30- or 46- in less base plate
mm length motion. No differ-
ences between 4
versus 6 screws
Elwell (2017) [28] Cadaver (n=4) - 25-mm 8-mm diameter, 2 or 4 Screws, Direct force 686 N Using 4 instead of 2
diameter  15-mm length  4.5-mm diameter screws resulted in
less base plate
motion.
Hoenig (2010) [30] Cadaver (n=10) Aequalis - - 3 or 4 Screws, 750 N for 50,000 Absence of posterior
(Tornier) 22- or 29-mm cycles screws (3 screws)
length resulted in higher
rates of glenoid
loosening than base
plates with posteri-
or screws (4 screws).
James (2013) [31]  Cadaver (n=12) Aequalis - - 2 or 4 Screws 650-1,000 N for  No differences in
(Tornier) 100 cycles supe-  base plate motion
rior followed by ~ between 2- and
100 cycles ante-  4-screw constructs
rior-posterior
Routman (2020)  Case-control ~ Equinoxe - - - - Increased risk of
[33] (n=4,125) (Exactech) scapular and/or
acromial fractures
when using more
base plate screws
Kennon (2017) [32] Case-control ~ Equinoxe - - 3 or 4 Screws, Compressive load Presence of superior
(n=318) (Exactech) 4.5-mm diameter, 10 mm/min screws (4 screws)
including a 18- or 38-mm resulted in higher
biomechanical length scapular fracture
model rates and lower load
to failure than base
plates without
superior screws
(3 screws).
Lopiz (2021) [34]  Retrospective ~ Delta III - Standard - - 3 or 4 versus 2 SCrews
cohortstudy  (DePuy), did not yield higher
(n=105) Delta Xtend odds for minor or
(DePuy), major radiographic
Lima SMR changes.
(LimaCor-
porate)

based on anatomical structures and/or maximum cortical fixa-
tion (Table 5) [22,23,35,36]. A finite element analysis study re-
ported a 30% reduction rate in the baseplate micromotion using
30-mm instead of 16-mm screws [20]. Likewise, a biomechanical
study reported lower baseplate micromotions after cycling load-

ing (500 N for 1,000 cycles) among baseplates secured with 36-
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mm compared to 18-mm screws. This group described mean
displacements with 36-mm vs. 18-mm screws, respectively, as
follows: inferior 258 +23 and 182+ 22 pm; superior 114+ 18 and
115417 pm; anterior 190+17 and 143 +16 pum; posterior
182+23 and 154 +22 um [25]. Additionally, a biomechanical
study observed that the lowest baseplate displacements (both
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Table 5. Optimal screw lengths in millimeters

First author (year) Definition Superior Posterior Anterior Inferior
Codsi (2007) [35] Maximum screw length 29 75
DiStefano (2011) [22]  Intraosseous through cortical bone and exits a “safe region” 35and 36 19 and 37 29 and 29 34 and 35
(based on anatomical structures)
Penetrates the thickest cortical region regardless of anatomical
structures
Hart (2013) [36] Maximized screw length, without damaging neurovascular 30 15 13 28
structures
Humphrey (2008) [23] Maximized screw length, accomplished far cortical fixation, 36 and 33 47 and 43

and attained screw purchase in good bone stock

Variable-angle baseplate, fixed-angle baseplate

pre- and post-cyclic loading 750 N for 10,000 cycles) occurred in
baseplates secured with 46-mm screws, followed by baseplates
secured with 30- and 18-mm screws (46-mm screws: 74 + 15 and
73+8 um; 30-mm screws: 101+12 and 111+16 pum; 18-mm
screws: 115+39 and 140+45 pm, pre- and post-cyclic loading,
respectively) [29]. The last cadaver study (n=7) described the
use of long screws and showed that outside-in screws, as well as
long screws, are risk factors for scapular fractures [37].

A case-control study reported no significant differences in the
screw length of posterior and superior screws between patients
with (n=53) or without (n=212) scapular spine fractures (23 vs.
22 mm, respectively) [38]. Similarly, a case-control study assessed
the relationship between increasing screw length and the occur-
rence of acromial fractures, but did not find an association [39].
Additionally, a retrospective cohort study (n=82) assessed the
incidence of glenoid penetration and found that all posterior
screws with a length >20 mm (n=82) penetrated the glenoid
vault (Table 6) [40].

Taken together, seven experimental studies reported benefits
of fixating the baseplates with screws that are at least 30 mm in
length. Two clinical studies reported no significant differences in
screw length between patients with or without scapular fractures.
One clinical study strongly advised against using >20 mm poste-

rior screws.

Screw Type

The authors of a biomechanical study suggested using at least
two locking screws, because they require a higher load to failure
(2,153+115 N) compared to constructs with four non-locking
screws (1,832+35 N) (P<0.01) [41]. Another biomechanical
study demonstrated that baseplates secured with four locking
screws had less baseplate micromotion than did those secured
with four non-locking screws (P =0.02) [42]. Contrarily, another

biomechanical study tested four screw combinations (1 locking
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screw vs. 3 non-locking screws, 2 vs. 2, 3 vs. 1, and 4 vs. 0) using
cyclic loading (750 N for 10,000 cycles). This group reported no
significant differences in baseplate micromotions after cycling
loading between the following combinations (reported with their
mean micromotions): 1 locking screw (97.1£47.2 um); 2 locking
screws (76.7£34.5 um); 3 locking screws (72.4+£15.3 pm); 4
locking screws (68.1+15.3 pm) [43]. Another biomechanical
study analyzed the use of locking versus non-locking screws
from another perspective. These authors concluded that if the
central element punctured well into the cortical bone, non-lock-
ing anterior and posterior screws were sufficient. On the con-
trary, if the central element was too short, the anterior-posterior
screws were required to have a locking function [44]. Further-
more, a cadaver study (n=10) compared the position of locking
screws (superior-inferior locking screws with anterior-posterior
compression screws versus anterior-posterior locking screws
with superior-inferior compression screws) and found no differ-
ence in micromotion between these different positions (Table 7)
[25].

In summary, two out of four biomechanical studies recom-
mended securing baseplates with at least two locking screws.
One biomechanical study showed that locking screws were par-
ticularly important if the central peg did not puncture into the
cortical bone. The cadaver study demonstrated that the position

of the locking screws does not improve the fixation strength.

Baseplate Tilt

Previous experimental studies that described the relationship be-
tween tilt and baseplate stress and impingement are contradict-
ing [27,45-48]. A retrospective cohort (n=146) with a mean fol-
low-up of 21 months reported that scapular notching significant-
ly decreased when an inferior tilt was used. However, baseplate
tilt angles did not affect the range of motion (ROM) or function-

al-, pain-, and satisfaction-scores [49]. Furthermore, another ret-
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Table 6. Overview of included studies for screw length

First author (year) Design Brand Base plate Peg Screw Loading Conclusion
Lung (2019) [25] Biomechanical — Delta Xtend (DePuy) - 13.5- or 23.5-mm 2 or 4 Screws, 500 N for 1,000  Less base plate
length cycles motion when
18- or 36-mm using 36-mm
length screws when
compared to
18-mm screws
Roche (2019) [29] Biomechanical — Equinoxe (Exactech) 24- or 25- - 2,4, 0r 6 screws, 750 N for 10,000 Lowest base plate
mm diam- 4.5-mm diame- cycles motion when
eter ter, 18- or 30- using 46-mm
or 46-mm screws, fol-
length lowed by 30-,
and 18-mm
screws
Hart (2013) [36]  Cadaver (n=10) RSP Encore (DJO - 6.5-mm diameter 4 Screws, - Table 5
Surgical) 5-mm diameter
Humphrey (2008) Cadaver (n=10) Aequalis (Tornier) - - 4 Screws - Table 5
[23]
Hopkins (2008)  Finite element  Delta III (DePuy); - - 4 Screws, 756 N axial supe- Using 30-mm
[20] RSP neutral (En- rior loading screws instead
core Medical); RSP 3.5- or 5-mm di- of 16-mm
reduced (Encore ameter, screws resulted
Medical) 16- or 30-mm in 30% less base
length plate motion.
Codsi (2007) [35] Virtual planning - - - 4-mm diameter - Table 5
DiStefano (2011)  Virtual planning Aequalis (Tornier)  29-mmdi- 8-mm diameter 4 Screws - Table 5
[22] ameter
Otto (2013) [38]  Case-control - - - 14-30-mm - No differences in
(n=265) length screw length
between pa-
tients with or
without scapu-
lar fractures
Cho (2021) [39]  Case-control Aequalis (Tornier), Several Several Several - Screw size is not
(n=787) Equinoxe (Exact- correlated with
ech), TM Reverse acromion frac-
(Zimmer), Ascend tures.
Flex (Tornier),
Comprehensive
Reverse (Biomet),
RSP (DJO Surgi-
cal), SMR (Lima),
Delta Xtend
(DePuy), Anatomi-
cal shoulder (Zim-
mer)
Jang (2022) [40] ~ Retrospective co- RSP (DJO Surgical), 30-, 20-, 25- - Length superior - All posterior
hort (n=82) comprehensive mm diam- screw: 28 +4 screw lengths
(Biomet), Aequalis eter, re- mm (15-35), >20 mm pene-
ascend flex (Wright ~ spectively posterior screw: trated the gle-
Medical) 18+3 mm (14~ noid vault
30)
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Table 7. Overview of included studies for screw type (locking vs. non-locking)

First author (year) Design Brand Base plate Peg Screw Methods Conclusion
Chebli (2008) [41] Biomechanical Delta (DePuy) - - 4 Screws, 200 N preloaded, Higher load to fail-
36-mm length followed by 30 ure when using
mm/sec locking screws in-
stead of non-lock-
ing screws
Formaini (2017)  Biomechanical RSP (DJO Global) - 6.5-mm diameter 4 Screws, 750 N for 10,000 No differences in
[43] 3.5- or 5-mm cycles base plate motion
diameter, when using 1
22-mm length locking screw vs.
3 non-locking
screws; 2 vs. 2; 3
vs. 154 vs. 0
Harman (2005) Biomechanical Delta III 23-or27-mm 16-mmlength 4 Screws, 756 N for 1,000  Less base plate mo-
[42] (DePuy); RSP diameter 3.5- or 5-mm cycles tion when using
(Encore diameter locking screws
Medical)
Torkan (2022) [44] Biomechanical Delta XTEND - 13.5-mm central 2 Peripheral Compressive Anterior and poste-
(DePuy) pegvs. 23.5 screws (anteri-  loading 500N,  rior holes can be
mm central or/ posterior), 1 Hz, 1,000 non-locking
screw (diame-  non-locking vs. ~ cycles screws if the cen-
ter: 6.5 mm) locking tral peg purchases
the cortical bone.
Abdic (2021) [24] Cadaver (n=10) Aequalis (Tornier) 29 mm 8-mm-diameter 2 Compression ~Compressive AP vs. ST locking
central post and 2locking  loading and screw position:
screws (APvs.  cyclic test similar fixation
SI) strength

AP: anteroposterior, SI: superoinferior.

rospective cohort (n=71) found no differences in the grade or
incidence of scapular notching at a minimum of 12 months of
follow-up between baseplates secured in neutral (0°) and inferior
(-10° or -15°) tilt: 76.7% vs. 60.7%, respectively (P =0.08) [50].
Additionally, a case-control study (n=136) concluded that base-
plate inclination was not related to the likelihood of developing
implant instability [51]. A retrospective cohort (n=105) reported
that superior tilt was associated with increased risks of scapular
notching and signs of loosening (odds ratio [OR]: 2.52 and OR:
8.92, respectively) [34]. However, another retrospective study
(n=154) described no significant difference in postoperative
ROM, patient-reported outcomes (PROMS), scapular notching,
and heterotopic ossification between inferior, neutral, and supe-
rior (up to 6°) glenoid baseplate inclination [52]. Comparable re-
sults were described in a retrospective case-control study (cas-
es=34 and controls=102); the final prosthetic glenoid inclina-
tion, as well as the change in glenoid inclination, had no influ-
ence on the risk of prosthetic instability [51]. Additionally, a co-
hort study (n=61) concluded that glenoid inclination had no
significant influence on clinical outcomes at a minimum fol-
low-up of 2 years [53]. Contrarily, another case-control study

(n=33) reported an association between baseplate tilt and im-

96

plant stability, as follows: —10.2° tilt in stable versus 8.3° in unsta-
ble implants (P=0.01) [54]. Likewise, another case-control study
(n=97) reported a 13% instability rate at a mean follow-up of 47
months, and the only factor found to be associated with it was
superior tilt: OR: 1.15, P=0.01) (Table 8) [55].

To summarize, the evidence is inconclusive to formulate guide-
lines with regard to baseplate tilt. Nevertheless, all prior studies

have recommended against superior tilt.

Baseplate Position

Despite contradictory results, most experimental studies pre-
ferred an inferior position of the baseplate to increase the peak
load failure and improve rotation [56-63]. A retrospective cohort
study (n=54) showed that patients with scapular notching had
higher positioned baseplates (as measured from the baseplate’s
inferior aspect to the inferior rim of the glenoid) than did those
without scapular notching (2.8 £3.3 vs. 0.6 +2.0 mm, P=0.03, re-
spectively) [64]. Another retrospective cohort study (n=77)
demonstrated that patients with inferior notching had higher
peg-glenoid rim distances than did those without inferior notch-
ing (24.7£3.0 vs. 20.1+2.5 mm, P<0.001, respectively) [65].

Furthermore, a retrospective cohort (n=151) concluded that pa-
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tients with scapular notching and/or osteophyte formation had
higher positioned baseplates than did those without either scap-
ular notching or osteophyte formation (20.3 vs. 19.1 mm, respec-
tively) [66]. Moreover, a cohort study reported significantly lon-
ger peg glenoid rim distances and shorter sphere bone overhang
distances in 13 patients with scapular notching as compared to
58 patients without scapular notching (24.8+1.6 and 2.6+0.5
mm vs. 21.9+1.9 and 5.8 + 1.9 mm, respectively). However, no
significant differences were found in shoulder function and ac-
tive ROM between the two patient groups at the last follow-up
(37.0 £3 months) [67]. A retrospective review (n=105) with a
minimum follow-up time of 5 years found an increased risk of
severe scapular notching that was mainly associated with a high
(the glenosphere grazed the inferior edge of the glenoid, OR:
2.68) or excessively high (the glenosphere was beyond the inferi-
or edge of the glenoid, OR: 7.55) position [34]. A retrospective
cohort (n=97) analyzing glenoid components with >3.5 mm of
inferior overhang versus flush glenoid components described a
significantly lower rate of radiographic notching (37% vs. 82.5%,
respectively), better clinical outcomes, and higher subjective
shoulder value if the glenoid component had at least 3.5mm of
inferior overhang as compared to a flush glenoid component
[68]. Contrarily, another retrospective cohort (n=147) conclud-
ed that inferior positioned baseplates were associated with in-
creased rates of scapular notching. However, baseplate positions
were not associated with the incidence of revision surgery (28.9
vs. 25.2 mm, P=0.17, revision yes/no, respectively) (Table 8)
[69]. In summary, the majority of the experimental and clinical

studies reported benefits of fixating baseplates inferiorly.

Baseplate Version and Rotation
A biomechanical study analyzed the differences between five dif-
ferent glenosphere positions (20° retroversion, 10° retroversion,
neutral position, 10° anteversion, and 20° anteversion) on im-
plant stability and concluded that baseplates should be secured in
anteversion or a neutral position to attain the highest stability ra-
tio [70]. A finite element analysis showed that a neutral glenoid
component produced the greatest impingement-free ROM, as
compared to 5° anteversion and 5°, 10°, and 20° retroversion [71].
A case-control study (including patients with scapular spine
fractures (n=53) and controls without scapular spine fractures
(n=212), reported no significant differences in baseplate
anteversion between the two groups [38]. The baseplate was
anteverted in 20% of the cases and in 17.6% of the controls [38].
According to a finite element analysis model, the baseplate retro-
version does not need to be corrected to <10° to provide good

initial fixation. Instead, it can withstand the initial stresses and

100

micromotion up to 25° of retroversion (Table 8) [72]. A virtual
planning study was the only study to examine the influence of
internal baseplate rotation; the group reported that 11° of inter-
nal rotation from the 12 oclock position resulted in the strongest

superior screw fixation [73].

Baseplate Design

Curved back or flat back?

A biomechanical study reported no differences in shear displace-
ment both pre- and post-cycling loading (750 N for 10,000 cy-
cles) between curved-back and flat-back baseplates [74]. Howev-
er, a virtual planning study showed better bone contact surface
area in curved-back baseplates when compared to flat-back base-
plates (P=0.01) despite the fact that flat-back implants had better
screw puncture and less bone removal during fixation than did
curved-back baseplates (P=0.03 and P=0.01, respectively) [75].
Another virtual planning study analyzed the amount of bone re-
moved during reaming in three different baseplate designs (two
curved-back and one flat-back baseplates). This group reported
that the amount of bone removal was the highest among 26-mm
curved-back baseplates, followed by 29-mm flat-back and 25-
mm curved-back baseplates (Table 9) [60].

Circular or oval?

Only one study examined the outcomes of circular versus oval
baseplates. This biomechanical study showed that circular base-
plates had more shear displacement in both the superior-inferior
and anterior-posterior directions both pre- and post-cyclic load-
ing (750 N for 10,000 cycles) than did oval baseplates (Table 9)
[73].

The smaller the better?

A cadaver study (n=5) demonstrated that 25-mm baseplates,
when compared to 29-mm baseplates, resulted in less baseplate
micromotion at the inferior third of the glenoid-glenosphere in-
terface, a smaller shoulder adduction deficit, and a greater im-
pingement-free ROM [76]. However, no differences in baseplate
displacement between 25- and 24-mm baseplates were found in a
biomechanical study using cyclic loading (750 N for 10,000 cy-
cles) [29].

One retrospective cohort (n=11) analyzed the outcomes of a
25-mm baseplate in a cohort of relatively short patients (mean
length: female, 156 + 8 cm; male, 171 +2 cm). Despite a high rate
of scapular notching (82%), outcomes at 3 years of follow-up
were successful, including: no revision procedures, no radio-
graphic evidence of implant loosening and acceptable ROM,
PROMs, and strength (Table 9) [78].
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In summary, one cadaver study reported superior outcomes of
25-mm and 29-mm baseplates, whereas one biomechanical study
found no differences in baseplate displacement between 25- and
24-mm baseplates. One retrospective cohort demonstrated ac-
ceptable outcomes of 25-mm baseplates.

The 2- or 1-peg design?

A case-control study (n=85) in which 2- and 1-peg baseplates
were compared reported a lower rate of scapular notching, poly-
ethylene induces osteolysis, and metal screw contact when using
2-peg baseplates [77]. However, the amount of baseplate micro-
motion following cyclic loading (750 N from 0-100,000 cycles)
did not differ between the two constructs (47 and 43 pm, 2- and
1-peg baseplates, respectively).

Central peg of central screw fixation?

A biomechanical study concluded that central screw fixation re-
sulted in less baseplate micromotion than did central peg fixa-
tion. Also, the central elements that puncture the cortical bone
result in less micromotion than do the shorter ones, which do

not reach the cortex [44].

Anatomical Safe Zones

A virtual planning study (n=56) described a danger zone to as-
sist surgeons to avoid SSN injury and revealed that the danger
zone of the superior screw was located between the 2- and
8-oclock positions (using the 12 oclock position of the right gle-
noid as reference) [79]. The posterior screw touched the neuro-
vascular structures in 33% of specimens in a cadaver study
(n=10) [36]. Additionally, another cadaver study (n=10) showed
that the superior and posterior screws posed the most risk to the
SSN, with a 40% chance of touching the SSN [80]. Even higher
rates of SSN engagement were reported in another cadaver study
(n=12) in which the superior screw touched the SSN in 8 (66%)
and the posterior screw in 6 specimens (50%). This group also
concluded that overly long screws pose a serious risk for SSN in-
jury and advised <2 mm penetration for superior or posterior
screws [81].

One retrospective study (n=_82) concluded that 13% of superi-
or screws and 65% of posterior screws penetrated the glenoid
vault. Among the superior screws, 64% had a high-risk of iatro-
genic SSN neuropathy (screw tip placed within 5mm of the
nerve), while only 6% of posteriorly inserted screws carried the
same risk. Comparison analysis showed no difference in PROMs
between the high- and low-risk (screw tip placed >5 mm of the
nerve) penetrations (Table 10) [40].

In summary, four experimental studies proved that far-cortex
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penetration by the superior and posterior screw should be avoid-
ed to minimize the likelihood of neurovascular injuries. One ex-
perimental study described a danger zone of the superior screw
between the 2- and 8-oclock positions (using the 12 oclock posi-
tion of the right glenoid as reference). However, a clinical study
showed that screw penetrations close to the SSN (high-risk) did
not portend poorer clinical outcomes compared to screw pene-

trations far away from the nerve (low-risk).

DISCUSSION

As universal guidelines on baseplate fixation are lacking, this re-
view sought to provide a narrative overview of the currently
available evidence on ten baseplate fixation aspects in rTSA. So
far, it can be deducted that: (1) Optimal screw insertion angles
are unknown. Therefore, until more evidence is gathered, sur-
geons should focus on adequate screw puncture in anatomical
safe zones and driving the inferior screw into the inferior scapu-
lar pillar; (2) Finite element studies advise the use of divergent
screw patterns only, while cadaver studies conclude that both
parallel or divergent patterns are sufficient for adequate stability;
(3) An increasing number of screws leads to a reduced baseplate
micromotion, but it is also associated with a higher risk of acro-
mial fractures; (4) Posterior screws should be shorter or equal to
20 mm, while other screws should be 30 mm or longer; (5) If the
central element does not puncture cortical bone, peripheral ante-
rior and posterior locking screws are recommended. It is note-
worthy that apart from one study, there seems to be a benefit of
using at least some locking screws in baseplate constructs; (6)
The optimal baseplate tilt is unknown, but the baseplate is best
secured inferiorly in either slight anteversion or a neutral posi-
tion; (7) There is no consensus on the best type of baseplate; and
(8) Far cortex penetration should be avoided. Due to the lack of
(large) clinical studies, methodological- and outcome-heteroge-
neity, these conclusions should be considered preliminary clini-
cal advice.

Although this review is a collection of the best evidence avail-
able, several limitations should be acknowledged. First, the ma-
jority of the included studies were experimental studies. There-
fore, their shortcomings, when compared to clinical studies,
should be taken into consideration [82-84]. Furthermore, the
biomechanical and virtual planning studies did not consider ad-
ditional factors that are likely to affect rTSA biomechanics (e.g.,
stabilizing effects of ligaments, rotator cuff muscles, patients’ dai-
ly activities, and anatomical variations). Second, although no ca-
daver studies were judged as “poor” on quality assessment, only

four out of 14 cadaver studies were assessed as having “good”
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Table 10. Overview of included studies for anatomical safe zones

First author (year) Design Brand Base plate Peg Screws Conclusion
Hart (2013) [36] Cadaver (n=10) Encore RSP (DJO - 6.5-mm 4 Screws, The posterior screw posed
Surgical) diameter 5-mm diameter the highest risk to neuro-

Molony (2011) [80] Cadaver (n=10) Delta Xtend -
(DePuy)

Vance (2021) [81]  Cadaver (n=12) Not specified

(Wright Medical)

Yang (2018) [79]  Virtual planning -

diameter

Jang (2022) [40] Retrospective

cohort (n=82) comprehensive
(Biomet), Aequa-
lis Ascend Flex

(Wright Medical)

tively

25-mm diameter

Mean 27.7-mm

RSP (DJO Surgical), 30-, 20-, 25- mm -
diameter, respec-

vascular structures.

- Mean length: inferior
screw 36 mm (range,
30-40 mm), anterior
screw 29.4 mm
(range, 26-30 mm),
posterior screw 26.2
mm (range, 18-32
mm)

Superior and posterior
screws posed the highest
risk to the SSN.

Central screw 3 Screws,
44-mm length

Superior and posterior
screws posed the highest
risk to the SSN.

Serious risk for SSN en-
gagement if superior or
posterior screw penetrates
the scapula. Recommend-
ed safe zone is <2-mm
penetration.

Anatomical danger zone is
located between the 2-
and 8-oclock position
(using the 12 oclock posi-
tion of the right glenoid
as reference).

Length superior screw: No difference in PROMs
28+4mm (15-35),  between low-risk, medi-
posterior screw: um-risk and high-risk
18+ 3 mm (14-30)

SSN: suprascapular nerve, PROM: patient-reported outcome.

quality. Third, most studies underreported their statistical results
such as confidence intervals and/or standard deviations. Fourth,
most included studies had methodological inconsistencies such as
a lack of power, small sample size, short follow-up duration, and
heterogenic outcomes. Furthermore, due to the between-study
heterogeneity of the outcomes and patient characteristics, it was
inappropriate to synthesize the outcomes to generate pooled effect
sizes. In addition, this review only focused on studies including pa-
tients without glenoid bone loss, because baseplate fixation in pa-
tients with glenoid bone loss requires different fixation tech-
niques compared to patients without glenoid bone loss [85]. Sev-
eral clinical studies had to be excluded because they analyzed pa-
tients with and without glenoid bone loss, and data from these
distinct patient groups were not extractable. A last limitation is
that some studies used baseplate micromotion as the primary
outcome and concluded on superiority relative to the compari-
son group, despite the fact that the amount of micromotion was

far below the commonly accepted threshold of osseointegration
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failure (150 pm). Still, how much micromotion will result in clin-
ical adverse events such as baseplate loosening and revision sur-

gery remains unclear [86].

CONCLUSIONS

Most surgical aspects of baseplate fixation can be decided with-
out affecting fixation strength. There is not a single strategy that
provides the best outcome. Therefore, guidelines should cover
multiple surgical options that can achieve adequate baseplate fix-
ation. This also implies that surgeons can opt for their desired
fixation method during surgery.
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