• Title/Summary/Keyword: Biomechanical design

Search Result 140, Processing Time 0.035 seconds

Development of an ACL Anchor: Effects of the Design Parameters on the Performance of a New Anterior Cruciate Ligament Fixation Device

  • Kim, Jong-Dae;Oh, Chae-Youn;Kim, Cheol-Sang
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.2
    • /
    • pp.132-138
    • /
    • 2008
  • We investigated the biomechanical properties of a newly designed self-expansion type anterior cruciate ligament (ACL) anchor. The ACL anchor consists of the ring section giving the elastic force, the wedge for maintaining in contact with the femur tunnel wall and the link suspending hamstring graft or artificial ligament. The main design parameters that determine the performance of this device were the expansion angle (${\theta}$) and the thickness ($t_R$). The Ti6Al4V anchors were heated after inserting in a jig for 1 hour at $800^{\circ}C$ in a protective argon gas atmosphere and allowed to cool to room temperature in the furnace. In order to investigate the influence of the expansion angle and the thickness of the ring on the biomechanical properties of the anchor, the maximum pull-out load, stiffness and slippage of the ACL anchor were measured using the pull-out tester, and statistical analyses were also executed. The present results showed that the design parameters gave a significant effect on the performance of the self- expansion type of anchor. The pull-out load of the ACL anchors significantly increased as the thickness of the ring section was increased, having a similar trend for both expansion angles. The ACL anchor showed about 2.5 times higher values of the pull-out load than that of the minimum load (500N)required for the "accelerated rehabilitation". The optimum ${\theta}$ and $t_R$ values of this ACL anchor were suggested to have sufficient resistance against the pull-out force, high stiffness and relatively low slippage after ACL reconstruction.

Three-dimensional optimization and sensitivity analysis of dental implant thread parameters using finite element analysis

  • Geramizadeh, Maryam;Katoozian, Hamidreza;Amid, Reza;Kadkhodazadeh, Mahdi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.2
    • /
    • pp.59-65
    • /
    • 2018
  • Objectives: This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. Materials and Methods: A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. Results: The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Conclusion: Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.

The Efficacy of Newly Designed Screw for Prevention of the Screw Breakage in Syndesmosis Fixation: Biomechanical Study (나사 파단 예방을 위해 새로 디자인한 경비 인대 결합 나사의 효용성: 생역학 연구)

  • Lee, Dong-Oh;Song, Sang-Heon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.24 no.2
    • /
    • pp.94-97
    • /
    • 2020
  • Purpose: Fatigue breakage of cortical screws sometimes occurs after syndesmosis fixation, regardless of the period of screw retention. This study compared the fatigue strength of a novel screw design to conventional cortical screws in the fixed state of syndesmosis. Materials and Methods: Twelve sawbone models were tested mechanically to determine the fatigue strength of three screw designs. The first group was composed of cortical screws, while the second and third groups were newly-designed screws. The second group was composed of screws with a 2.4-mm diameter thread-free portion of the mid-shank while the third group had a 2.0-mm diameter thread-free mid-shank. A 400 N load was applied repetitively to a fibula model and the number of cycles until screw failure was recorded. Four screws from each group were tested, giving a total of 12 fatigue tests. Results: The average cycles until screw failure for groups 1, 2, and 3 were 8,134, 63,186, and 2,581, respectively. The second group showed the highest fatigue strength (p=0.018). The other two screw designs showed similar fatigue strength (p=0.401). Conclusion: New screw designs with a thread-free portion in the mid-shank could reduce the occurrence of fatigue breakage after syndesmosis fixation.

Psychophysical cost function of joint movement for arm reach posture prediction

  • 최재호;김성환;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.561-568
    • /
    • 1994
  • A man model can be used as an effective tool to design ergonomically sound products and workplaces, and subsequently evaluate them properly. For a man model to be truly useful, it must be integrated with a posture prediction model which should be capable of representing the human arm reach posture in the context of equipments and workspaces. Since the human movement possesses redundant degrees of freedom, accurate representation or prediction of human movement was known to be a difficult problem. To solve this redundancy problem, a psychophysical cost function was suggested in this study which defines a cost value for each joint movement angle. The psychophysical cost function developed integrates the psychophysical discomfort of joints and the joint range availability concept which has been used for redundant arm manipulation in robotics to predict the arm reach posture. To properly predict an arm reach posture, an arm reach posture prediction model was then developed in which a posture configuration that provides the minimum total cost is chosen. The predictivity of the psychophysical cost function was compared with that of the biomechanical cost function which is based on the minimization of joint torque. Here, the human body is regarded as a two-dimensional multi-link system which consists of four links ; trunk, upper arm, lower arm and hand. Real reach postures were photographed from the subjects and were compared to the postures predicted by the model. Results showed that the postures predicted by the psychophysical cost function closely simulated human reach postures and the predictivity was more accurate than that by the biomechanical cost function.

Biomechanical Analysis of Lumbar Interspinous Process Fixators and Design of Miniaturization and Advanced Flexibility (요추부 극돌기간 고정기구의 생체역학적 해석과 소형화 및 유연성 향상 설계)

  • Park, Jung-Hong;Heo, Soon;Lee, Sung-Jae;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.12 s.255
    • /
    • pp.1509-1517
    • /
    • 2006
  • The intervertebral fusion was reported to increase the degeneration of the neighboring region. Recently, a new technique of inserting an interspinous process fixator has been introduced to minimize the degenerative change in the lumbar spine. This study analyzed biomechanical effects of the fixator in the lumbar spine, and designed a new prototype to improve flexibility of the fixator with a reduced size. The evaluation was based on the displacement, stiffness and von-Mises stress obtained from the mechanical test and finite element analysis. A finite element lumbar model of L1 to L5 was constructed. The finite element model was used to analyze intervertebral fusion, insertion of a commercial fixator and a new prototype. The range of motion of intervertebral segments and pressures at vertebral discs were calculated from FEA. The results showed that the stiffness of the prototype was reduced by 32.9% than that of the commercial one.

Application of Quality Function Deployment to Ergonomic Design of a Plier (품질기능전개를 이용한 플라이어의 인간공학적 디자인)

  • Park, Hee-Sok;Lee, Mi-Ran
    • Journal of the Ergonomics Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.85-90
    • /
    • 2007
  • This study shows a way to develop ergonomic design of a plier through quality function deployment (QFD) approach. User needs for pliers, as well as the engineering characteristics which have influence on the ergonomic quality of pliers were determined from the interviews and questionnaires with various user groups. This information was entered in the house of quality, and the results show that the handle is the most important quality factor. A new model was proposed in which ergonomic and gender aspects were considered. QFD is considered a suitable method especially for the manufacturing and/or design fields where biomechanical or physiological background is not present.

Development of Office Chair for Lumbar Support (허리지지를 위한 사무용 의자 개발)

  • Park, Soo-Chan;Lee, Young-Shin;Kim, Dong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.376-380
    • /
    • 2000
  • All chairs are uncomfortable in the long run, but some chairs become uncomfortable more rapidly than others, and in any particular chair, some people will be more uncomfortable than others. Comfort will depend upon the interaction of chair characteristics, user characteristics, and task characteristics. In this study, we intend to design the comfortable office chair by investigating the anthropometric and biomechanical aspects for Korean. Therefore, we determine the design dimensions using the analysis of anthropometric data. With these dimensions, we design the chair mechanism of which backrest reclines with increasing chair pan declination. This mechanism allows the back to get adequate support at the correct level for any backrest declination. Also, the lumbar support in the backrest descends with increasing backrest reclining. By using this chair, a considerably better sitting posture can be obtained, and uncomfortable feeling and back pain may be prevented.

  • PDF

Performances of BLDCM Drive System for Treadmill Application

  • Ahn, Jin-Woo;Lee, Dong-Hee
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.133-138
    • /
    • 2003
  • In this paper, a BLDC motor and its controller are developed for treadmill application. Motor size and structure are restricted in the design stage due to the limited and enclosed space of the treadmill. The shape of the rotor magnet is analyzed using FEM with restricted design conditions. Manufacturing, cost and performance are also considered. A biomechanical analysis of human locomotion with the change of velocity is considered in the design of the controller. For stable operation of the treadmill, current and temperature are to be detected by the DSP controller. The prototype BLDCM and its controller are tested to verify its performances.