• Title/Summary/Keyword: Biomechanical condition

Search Result 67, Processing Time 0.018 seconds

Biomechanical Comparisons of Kettlebell Two-arm Swings according to Somatosensory Interventions for Beginners: Focusing on Joint Ranges of Motion and Muscle Activations (체성감각 처치를 초보자에게 적용한 케틀벨 투암 스윙의 운동역학적 효과 비교: 관절 가동범위와 근활성도를 중심으로)

  • Back, Yei-Chang;Kim, Young-Kwan
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.89-96
    • /
    • 2019
  • Objective: The purpose of this study was to investigate biomechanical comparisons of kettlebell two-arm swings after different somatosensory interventions on joint ranges of motion (ROM) and muscle activations. Method: Fourteen kettelbell novices (age: $22.92{\pm}3.23yrs$, mass: $75.75{\pm}9.94kg$, height: $172.03{\pm}5.49cm$), consisting of male college students, participated in this study and performed two-arm kettlebell swings in different conditions. Three different somatosensory interventions were the applications of heavy mass kettlebell (20 kg), taping on gluteus muscles, and unstable mat condition. All subjects performed pre-intervention swings and post-intervention swings, respectively. Statistical analysis were performed on results of joint kinematics and electromyographies of major muscles. Results: Results showed significant increases in ROM of hip and decreases in ROM of shoulder after unstable mat trials. In addition, the application of unstable mat during kettlebell swings induced higher muscle activations in gluteus maximus muscle during only upward phase of two-arm kettlebell swings. Conclusion: For beginner, the application of unstable surface would increase in hip joint ranges of motion with enhancement of gluteus muscles.

Effects of Targeted Knee Flexion Angle on the Biomechanical Factors of Upward and Downward Phases during Forward Lunge

  • Lim, Young-Tae;Park, Jun Sung;Lee, Jae Woo;Kwon, Moon-Seok
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.125-132
    • /
    • 2017
  • Objective: The aim of this study was to investigate the effect of targeted knee flexion angle on biomechanical factors of knee joint between upward and downward phases during the forward lunge. Method: Eight elderly subjects (age: $22.23{\pm}1.51years$, weight: $69{\pm}6.63kg$, height: $174.88{\pm}6.85cm$) participated in this study. All reflective marker data and ground reaction force during a forward lunge were collected. The knee joint movement and reaction force and joint moment at maximum knee flexion angle were compared by repeated measures one-way analysis of variance (ANOVA) (p<.05). The peak knee joint reaction force and joint moment between upward and downward phases were compared by repeated measures two-way ANOVA (p<.05). Results: The anterior and vertical knee joint movements, reaction force, and extensor moment of $80^{\circ}$ targeted knee flexion condition at maximum knee flexion angle was greater than both $90^{\circ}$ and $100^{\circ}$ conditions (p<.05). The $80^{\circ}$ knee flexed angle condition had greater peak joint reaction force and extensor moment compared with both $90^{\circ}$ and $100^{\circ}$ conditions between upward and downward phases during the forward lunge. Conclusion: As the targeted knee joint flexion angle increases, knee joint movement and kinetic variables become greater during the forward lunge exercise.

The Effects of Chair Height and Foot Condition on the Biomechanical Factors in Sit-to-Stand Movement of Hemiplegic Patients (편마비 환자의 앉은 자세에서 일어서기 동작 시 의자 높이와 발의 조건이 생체역학적 요소에 미치는 영향)

  • Kim, Dong-hoon;Kim, Tack-hoon;Choi, Houng-sik;Roh, Jung-suk;Choi, Kyu-hwan;Kim, Ki-song
    • Physical Therapy Korea
    • /
    • v.25 no.2
    • /
    • pp.1-12
    • /
    • 2018
  • Background: It is very difficult for hemiplegic patients to effectively perform the sit-to-stand (STS) movements independently because of several factors. Moreover, the analysis of STS motion in hemiplegic patients has been thus far confined to only muscle strength evaluation with little information available on structural and environmental factors of varying chair height and foot conditions. Objects: This study aimed to analyze the change in biomechanical factors (ground reaction force, center of mass displacement, and the angle and moment of joints) of the joints in the lower extremities with varying chair height and foot conditions in hemiplegic patients while they performed the STS movements. Methods: Nine hemiplegic patients voluntarily participated in this study. Their STS movements was analyzed in a total of nine sessions (one set of three consecutive sessions) with varying chair height and foot conditions. The biomechanical factors of the joints in the lower extremities were measured during the movements. Ground reaction force was measured using a force plate; and the other abovementioned parameters were measured using an infra-red camera. Two-way repeated analysis of variance was performed to determine the changes in biomechanical factors in the lower extremities with varying chair height and foot conditions. Results: No interaction was found between chair height and foot conditions (p>.05). All measured variables with varying chair height showed a significant difference (p<.05). Maximum joint flexion angle, maximum joint moment, and the displacement of the center of mass in foot conditions showed a significant difference (p<.05); however the maximum ground reaction force did not show a significant difference (p>.05). Conclusion: The findings suggest that hemiplegic patients can more stably and efficiently perform the STS movement with increased chair height and while they are bare-foot.

The effect of biomechanical stimulation on osteoblast differentiation of human jaw periosteum-derived stem cells

  • Lee, Ju-Min;Kim, Min-Gu;Byun, June-Ho;Kim, Gyoo-Cheon;Ro, Jung-Hoon;Hwang, Dae-Seok;Choi, Byul-Bora;Park, Geun-Chul;Kim, Uk-Kyu
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.7.1-7.9
    • /
    • 2017
  • Background: This study was to investigate the effect of biomechanical stimulation on osteoblast differentiation of human periosteal-derived stem cell using the newly developed bioreactor. Methods: Human periosteal-derived stem cells were harvested from the mandible during the extraction of an impacted third molar. Using the new bioreactor, 4% cyclic equibiaxial tension force (0.5 Hz) was applied for 2 and 8 h on the stem cells and cultured for 3, 7, and 14 days on the osteogenic medium. Biochemical changes of the osteoblasts after the biomechanical stimulation were investigated. No treatment group was referred to as control group. Results: Alkaline phosphatase (ALP) activity and ALP messenger RNA (mRNA) expression level were higher in the strain group than those in the control group. The osteocalcin and osteonectin mRNA expressions were higher in the strain group compared to those in the control group on days 7 and 14. The vascular endothelial growth factor (VEGF) mRNA expression was higher in the strain group in comparison to that in the control group. Concentration of alizarin red S corresponding to calcium content was higher in the strain group than in the control group. Conclusions: The study suggests that cyclic tension force could influence the osteoblast differentiation of periosteal-derived stem cells under optimal stimulation condition and the force could be applicable for tissue engineering.

A Biomechanical Modeling of Human Pharyngeal Muscular Dysfunction by Using FEM(Finite Element Method) (유한요소법을 이용한 인두의 기능이상에 대한 생체역학적 모델)

  • Kim Sung Jae;Bae Ha Suk;Choi Byeong Cheol;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.6 s.81
    • /
    • pp.515-522
    • /
    • 2003
  • Pharynx is a system transporting foods by peristaltic motion(contraction and expansion movement! into the esophagus and functioning as airway passages. In this study, structural changes of pharyngeal dysfunction are analyzed by biomechanical model using CT and FEM(finite clement method). Loading condition was assumed that equal pressure was loaded sequentially to inside of pharyngeal tissue. In order to analyze the pharyngeal muscular dysfunction by biomechanical model. the pharyngeal dysfunctions was classified into 3 cases. Taking into account the clinical complication by neuromuscular symptoms such as pharyngeal dysfunction after stroke. we assumed that a change of material property is caused by muscular tissue stiffness. A deformation of cross sectional area of the pharynx is analyzed increasing the stiffness $25\%,\;50\%,\;75\%$ in each case on the basis of stress-strain relationship. Based on three-dimensional reconstruction of pharyngeal structure using limited factor - techniques and the optimization procedure by means of inverse dynamic approach. the biomechanical model of the human pharynx is implemented. The results may be used as clinical index illustrating the degree of pharyngeal muscular dysfunction. This study may be used as useful diagnostic model in discovering early deglutitory impediment caused by physiological or pathological pharyngeal dysfunction.

Biomechanical Comparison of HG(hard ground) Soccer Footwear and SG(soft ground) Soccer Footwear (Hard Ground용 축구화와 Soft Ground용 축구화의 운동역학적 비교)

  • Jin, Young-Wan;Shin, Je-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.75-83
    • /
    • 2006
  • The Purpose of this study was to compare the biomechanical difference of two soccer footwear. which will provide scientific data to coaches and players, to further prevent injuries and to improve each players skills. The result of this study can be summarized after testing the two types of soccer footwear with comparative transforming heel angles and also with a pressure distribution in running. When a player's foot first touched the ground, the average difference of in/eversion was between 1.2 and 3.1 degrees for the two soccer shoes. In regards to maximum inversion and eversion of foot, maximum tibial rotation, and maximum and total movement of foot, the condition of barefoot and the two soccer shoes showed a small difference from 1.5 to 3.5 degrees and the difference among the subjects of study wasn't constant. In regards to maximum velocity of inversion and eversion running in one's bare feet showed much lower inversion velocity in comparison to putting on two types of soccer shoes and comparison of the average. Among some of the subjects, after putting on the two types of soccer shoes exceeded $97^{\circ}/s$ in maximum velocity of eversion. In the maximum braking impulse(t=2774, p<.05) and propulsive impulse for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running. In the maximum braking force(t=3.270, p<.05) and propulsive force(t=4.956, p<.05) for antero-posterior direction, there was a statistically significant difference between the two soccer footwear at running.

A Newly Designed Miniplate Staple for High Tibial Osteotomy (근위골절술을 위한 Staple 설계)

  • Mun, Mu-Seong;Bae, Dae-Kyung
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.19-22
    • /
    • 1995
  • A biomechanical study was made to demonstrate the superior mechanical performance of the newly designed Miniplate staple to the conventional Coventry staple in high tibial osteotomy(HTO). Using twenty fresh porcine tibiae, the fixational strengh of the two different types of staple in HTO was compared. To minimize the error due to the specimen-to-specimen individuality, the bone mineral density of the tibiae was measured with a bone densitometry (Dual photon absorptionometer, Luner, USA) and those with $0.8\;{\sim}\;1.2\;gm/cm^2$ at the proximal tibia was used in the biomechanical test. Testing was performed on a material testing system (Autogram ET-5, Shimatzu, Japan) with aid of a commercial data processor (IBM 80386/ ASYST). Using two differant loading modes, 'pull-out' and 'push-out', the maximum resistant force required to release the staple from the substrate bone was recorded. In the pull-out test, ten non-osteotomized specimens were used and the staple was pullout by subjecting an axial tension on the head of the staple inserted. While in the pull-out test where ten tibiae osteotomized in the usual way of HTO were used, the staple was not directly loaded. In this testing, as a mimic condition of the natural knee, the distal part of the specimen tibia was pushed horizontally in order for the staple to be pulled out while the proximal tibia was fixed. The pull-out strength of Coventry staple and miniplate staple were found to be $27.88\;{\pm}\;5.12\;kgf$ and $182.47\;{\pm}\;32.75\;kgf$, respectively. The push-out strength of Coventry staple and miniplate staple were $18.40\;{\pm}\;4.47\;kgf$ and $119.95\;{\pm}\;19.06\;kgf$, respectively. The result revealed that miniplate staple had the pull-out/ push-out strength at least fivetimes higher than Coventry staple. Based on the measured data, it was believed that the newly designed miniplate staple could provide much better postoperative fixation in HTO. The postoerative application of long leg casting may not be needed after HTO surgery.

  • PDF

Bone-Preserving Decompression Procedures Have a Minor Effect on the Flexibility of the Lumbar Spine

  • Costa, Francesco;Ottardi, Claudia;Volkheimer, David;Ortolina, Alessandro;Bassani, Tito;Wilke, Hans-Joachim;Galbusera, Fabio
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.6
    • /
    • pp.680-688
    • /
    • 2018
  • Objective : To mitigate the risk of iatrogenic instability, new posterior decompression techniques able to preserve musculoskeletal structures have been introduced but never extensively investigated from a biomechanical point of view. This study was aimed to investigate the impact on spinal flexibility caused by a unilateral laminotomy for bilateral decompression, in comparison to the intact condition and a laminectomy with preservation of a bony bridge at the vertebral arch. Secondary aims were to investigate the biomechanical effects of two-level decompression and the quantification of the restoration of stability after posterior fixation. Methods : A universal spine tester was used to measure the flexibility of six L2-L5 human spine specimens in intact conditions and after decompression and fixation surgeries. An incremental damage protocol was applied : 1) unilateral laminotomy for bilateral decompression at L3-L4; 2) on three specimens, the unilateral laminotomy was extended to L4-L5; 3) laminectomy with preservation of a bony bridge at the vertebral arch (at L3-L4 in the first three specimens and at L4-L5 in the rest); and 4) pedicle screw fixation at the involved levels. Results : Unilateral laminotomy for bilateral decompression had a minor influence on the lumbar flexibility. In flexion-extension, the median range of motion increased by 8%. The bone-preserving laminectomy did not cause major changes in spinal flexibility. Two-level decompression approximately induced a twofold destabilization compared to the single-level treatment, with greater effect on the lower level. Posterior fixation reduced the flexibility to values lower than in the intact conditions in all cases. Conclusion : In vitro testing of human lumbar specimens revealed that unilateral laminotomy for bilateral decompression and bone-preserving laminectomy induced a minor destabilization at the operated level. In absence of other pathological factors (e.g., clinical instability, spondylolisthesis), both techniques appear to be safe from a biomechanical point of view.

The Differences of Stride Length and Cadence between Normal and Obese Children (정상아와 비만아의 활보장과 분속수의 차이)

  • Kim, Jong-Jeong;Lee, Soon-Hyang;Ji, Seong-Chul;Doo, Jung-Hee
    • Physical Therapy Korea
    • /
    • v.3 no.2
    • /
    • pp.36-41
    • /
    • 1996
  • The purpose of this study was to determine whether the biomechanical variables of the walking patterns of the obese children compared with those of normal children would revealing significant differences. Normal(N=25) and obese(N=19) subjects were screened based on a health record which was examined to eliminate any subjects who had any pathological condition related to their gait. Data for a minimum of 5 repeated walking trials were collected using a stop watch and a tape measure. Basic kinematic analyses yielded data based on the following variables : stride length divided by leg length, and cadence divided by leg length. This measurement data was classified by the Obesity Index calculated from by height, weight data. Results showed no significant difference among normal, obese and subjects(p>.05). Difficulties in formulating the experimental condition and poor equipment quality are thought to be reason for the inconclusive results. Future studies might include medical complications such as tibia vara, genu valgum, other diseases caused by obesity.

  • PDF

Evaluation of Ramp Test Using Human Perception (인지적 평가기준을 이용한 Ramp Test의 특성평가)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.9-14
    • /
    • 2012
  • The objectives of this study were to compare the results of HSL (Health and Safety Laboratory) ramp test with perceived sense of slip onto the several different floor surfaces under contaminated conditions. There are a variety of approaches from biomechanical measurements to psychophysical test and human perception. However, controversies over these approaches still remain. Some widely accepted methods need to be improved. AHP (Analytic Hierarchy Process) was used to evaluate the perception of slipperiness of seven different floor surfaces under the contaminated condition with glycerol solution. Twelve subjects worn same footwear and walked with self-selected step and cadence along the test floors. The angle of inclination obtained for water wet condition using 5 l/min with HSL ramp test was compared to perception of slipperiness. The surface roughness ($R_z$) related very well both AHP (r=0.95) and ramp test (r=0.92). The high significant correlation (r=0.90) was found between AHP and HSL ramp test.The HSL ramp test values (Coefficient of Friction, COF) according to subjective evaluation were divided into two categories. There were high correlations between test results (subjective evaluation, HSL ramp test) and surface roughness in Rz. Perception rating obtained with AHP showed a high correlation with COF obtained with HSL ramp test.