Effects of Targeted Knee Flexion Angle on the Biomechanical Factors of Upward and Downward Phases during Forward Lunge |
Lim, Young-Tae
(Division of Sports Science, College of Science and Technology, Konkuk University)
Park, Jun Sung (Department of Sports Science, Graduate School of Konkuk University) Lee, Jae Woo (Department of Sports Science, Graduate School of Konkuk University) Kwon, Moon-Seok (Division of Sports Science, College of Science and Technology, Konkuk University) |
1 | Arms, S. W., Pope, M. H., Johnson, R. J., Fischer, R. A., Arvidsson, I. & Eriksson, E. (1984). The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. The American Journal of Sports Medicine, 12(1), 8-18. DOI |
2 | Boden, B. P., Dean, G. S., Feagin, J. A. & Garrett, W. E. (2000). Mechanisms of anterior cruciate ligament injury. Orthopedics, 23(6), 573-578. |
3 | Ekstrom, R. A., Donatelli, R. A. & Carp, K. C. (2007). Electromyographic analysis of core trunk, hip, and thigh muscles during 9 rehabilitation exercises. Journal of Orthopaedic & Sports Physical Therapy, 37(12), 754-762. DOI |
4 | Escamilla, R. F., Zheng, N., MacLeod, T. D., Edwards, W. B., Hreljac, A., Fleisig, G. S. & Andrews, J. R. (2008). Patellofemoral joint force and stress between a short-and long-step forward lunge. Journal of Orthopaedic & Sports Physical Therapy, 38(11), 681-690. DOI |
5 | Escamilla, R. F., Zheng, N., MacLeod, T. D., Imamura, R., Edwards, W. B., Hreljac, A. & Paulos, L. (2010). Cruciate ligament forces between short-step and long-step forward lunge. Medicine and Science in Sports and Exercise, 42(10), 1932-1942. DOI |
6 | Farrokhi, S., Pollard, C. D., Souza, R. B., Chen, Y., Reischl, S. & Powers, C. M. (2008). Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Journal of Orthopaedic & Sports Physical Therapy, 38(7), 403-409. DOI |
7 | Fleming, B. C., Renstrom, P. A., Beynnon, B. D., Engstrom, B., Peura, G. D., Badger, G. J. & Johnson, R. J. (2001). The effect of weightbearing and external loading on anterior cruciate ligament strain. Journal of Biomechanics, 34(2), 163-170. DOI |
8 | Henriksen, M., Alkjaer, T., Simonsen, E. B. & Bliddal, H. (2009). Experimental muscle pain during a forward lunge--the effects on knee joint dynamics and electromyographic activity. British Journal of Sports Medicine, 43(7), 503-507. DOI |
9 | Hall, M., Nielsen, J. H., Holsgaard-Larsen, A., Nielsen, D. B., Creaby, M. W. & Thorlund, J. B. (2015). Forward lunge knee biomechanics before and after partial meniscectomy. The Knee, 22(6), 506-509. DOI |
10 | Heijne, A., Fleming, B. C., Renstrom, P. A., Peura, G. D., Beynnon, B. D. & Werner, S. (2004). Strain on the anterior cruciate ligament during closed kinetic chain exercises. Medicine and Science in Sports and Exercise, 36(6), 935-941. DOI |
11 | Hewett, T. E., Myer, G. D. & Ford, K. R. (2006). Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. The American Journal of Sports Medicine, 34(2), 299-311. DOI |
12 | Hewett, T. E., Myer, G. D., Ford, K. R., Heidt, R. S., Jr, Colosimo, A. J., McLean, S. G. & Succop, P. (2005). Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. The American Journal of Sports Medicine, 33(4), 492-501. DOI |
13 | Hofmann, C. L., Holyoak, D. T. & Juris, P. M. (2017). Trunk and shank position influences patellofemoral joint stress in the lead and trail limbs during the forward lunge exercise. Journal of Orthopaedic & Sports Physical Therapy, 47(1), 31-40. DOI |
14 | Isaac, D., Beard, D., Price, A., Rees, J., Murray, D. & Dodd, C. (2005). Invivo sagittal plane knee kinematics: ACL intact, deficient and reconstructed knees. The Knee, 12(1), 25-31. DOI |
15 | Li, G., Zayontz, S., Most, E., DeFrate, L. E., Suggs, J. F. & Rubash, H. E. (2004). In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: An in vitro investigation. Journal of Orthopaedic Research, 22(2), 293-297. DOI |
16 | Jin, Y. W. (2013). A biomechanical analysis according to passage of rehabilitation training program of ACL patients. Korean Journal of Sport Biomechanics, 23(3), 235-243. DOI |
17 | Kim, T. H. & Youm, C. H. (2013). Effects of knee joint muscle fatigue and overweight on the angular displacement and moment of the lower limb joints during landing. Korean Journal of Sport Biomechanics, 23(1), 63-76. DOI |
18 | Kong, S. J. (2014). Kinetic characteristics of dominant and non-dominant legin fencing lunge. Korean Journal of Sports Science, 25(3), 590-601. DOI |
19 | Kritz, M., Cronin, J. & Hume, P. (2009). Using the body weight forward lunge to screen an athlete's lunge pattern. Strength & Conditioning Journal, 31(6), 15-24. DOI |
20 | Kwon, M. S. (2012). Effect of added mass between male and female on the lower extremity joints angular velocity, moment, absorb energy during drop landing. Korean Journal of Sport Biomechanics, 22(3), 325-332. DOI |
21 | Markolf, K. L., Burchfield, D. M., Shapiro, M. M., Shepard, M. F., Finerman, G. A. & Slauterbeck, J. L. (1995). Combined knee loading states that generate high anterior cruciate ligament forces. Journal of Orthopaedic Research, 13(6), 930-935. DOI |
22 | Meyer, E. G. & Haut, R. C. (2005). Excessive compression of the human tibio-femoral joint causes ACL rupture. Journal of Biomechanics, 38(11), 2311-2316. DOI |
23 | Park, S. R., Lee, M. G. & Choi, S. M. (2010). Comparison of electromyographic activity of quadriceps during lunge according to ankle positions in ssireum players with patellofemoral pain syndrome. Exercise Science, 19(3), 219-230. DOI |
24 | Yu, B., Lin, C. & Garrett, W. E. (2006). Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics, 21(3), 297-305. DOI |
25 | Yu, B. & Garrett, W. E. (2007). Mechanisms of non-contact ACL injuries. British Journal of Sports Medicine, 41 Suppl 1, i47-51. DOI |
26 | Zatsiorsky, V., Seluyanov, V. & Chugunova, L. (1990). In vivo body segment inertial parameters determination using a gamma-scanner method. Biomechanics of Human Movement: Applications in Rehabilitation, Sports and Ergonomics, 186-202. |