• Title/Summary/Keyword: Biomechanic movement

Search Result 3, Processing Time 0.017 seconds

Movement Patterns of Head and Neck in Proprioceptive Neuromuscular Facilitation (고유수용성 신경근 촉진법의 두부·경부 운동 패턴)

  • Bae, Sung-soo;Kim, Sang-soo
    • PNF and Movement
    • /
    • v.3 no.1
    • /
    • pp.27-34
    • /
    • 2005
  • Objective : The purpose of this study was conducted to find correct head and neck patterns, manual contact. verbal commands with proprioceptive neuromuscular facilitation(PNF). Method : This is a literature study with books, seminar note and book for PNF international course. Result : Keep the information of the biomechanics and neural science in head and neck patterns and emphasize that manual contact, verbal commands and visual stimulus. Manual contacting for movement guide and stability of the $C_0/C_1$ verbal command and visual stimulus for correcting of the $C_0/C_1$ movements. Conclusion : In reminder for PNF learning, begin with head and neck and upper trunk patterns. In that time, Knott and Voss(1968) had not enough information about biomechanic movement components and neural science movement components. But Knott and Voss(1968) emphasized that head and neck patterns relate with trunk, upper extremities and lower extremities directly. Alar ligaments are relaxed with the head in neutral and taut in flexion. Axial rotation of the head and neck tightens both alar ligaments. The right upper and left lower portions of the alar ligament limit left lateral flexion of the head and neck. Therefore, head and neck patterns has to be modify. When head moving, eye and vestibular stimulus will be change. During head and neck patterns, must be consider about stimulus of eye system and vestibular system also.

  • PDF

Manual Medicine Study about Circulation of Meridian WiGi, YoungGi (위기영기의 순환에 관한 수기의학적 소고)

  • Kim, Gyu-Sub
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.15 no.2
    • /
    • pp.33-41
    • /
    • 2020
  • Objectives The purpose of this report was to study the circulation of meridian WiGi, YoungGi, from the viewpoint of manual medicine. Methods First, the Korean Medical approach analyzes documents about the circulation of meridian WiGi, YoungGi, and the biomechanical approach is to analyze documents about kinetic force and kinematic movement. The third inherent energy approach is to analyze documents about craniosacral rhythm and visceral motility. Finally, it is to study the correlation between the circulation of meridian WiGi, YoungGi, and the viewpoint of biomechanics force and movement, the inherent energy of manual medicine. Results Meridian WiGi is fast, powerful, and changeful. It circulates through the head and extremities in the daytime and visceral organs at night. The deviation pelvis and distorted thoracic cage create kinetic force and kinematic movement. Meridian YoungGi is very small and soft energy and circulates meridians and visceral organs permanently. Craniosacral rhythm and visceral motility radiate continuously from cranial and visceral organs to the whole body. Conclusions Circulation of meridian WiGi is closely related to the biomechanical approach. In addition, circulation of meridian YoungGi is closely related to the inherent energy approach.

Biomechanical Analysis of Sitting Up from a Lying Posture in Stroke Patients (뇌졸중 환자의 누운 자세에서 앉기 동작의 생체 역학적 분석)

  • Park, Seung-Kyu;Yang, Dae-Jung;Kang, Jung-Il;Lee, Jun-Hee;Yoon, Jong-Hyeouk
    • The Journal of Korean Physical Therapy
    • /
    • v.25 no.2
    • /
    • pp.103-109
    • /
    • 2013
  • Purpose: This study was conducted in order to suggest an effective method of daily life movement training for stroke patients by comparison and analysis of the biomechanic characteristics of sitting up from a lying posture in stroke patients and healthy elderly participants. Methods: Fifteen stroke patients and 15 age-matched elderly participants were included in the study. The movement of sitting up from a lying posture was divided into three stages, and the differences in muscle activity in the sternocleidomastoid (SCM), rectus abdominis (RA), external oblique (EO), and rectus femoris (RF) during the movement were analyzed. Results: Subjects in the experimental group showed slower speed than those in the control group. In the neck joint, the change of angle in movement showed a larger decrease at all stages in the experimental group than in the control group; the movement also decreased in stages I and II in the upper trunk joint. The movement also showed a statistically significant decrease in stage II in the lower trunk, pelvic, and hip joints. The SCM showed higher activity in the control group than in the experimental group, showing a statistically significant difference; the RA showed high activity in the experimental group. The RF showed higher activity in the control group than in the experimental group, showing a statistically significant difference. Conclusion: From the results obtained above, increasing movements in the neck, pelvic, and hip joints and strengthening of lower body muscles are required in order to improve the ability for getting up from a lying posture in stroke patients.