• Title/Summary/Keyword: Biomass to Liquid

Search Result 220, Processing Time 0.031 seconds

Applicability of Fomes fomentariusfor the formation of a mycelial mat (균사체 매트 제작을 위한 말굽버섯의 응용 가능성)

  • Kim, Hyun-Suk;Oh, Deuk-Sil;Jung, Young-Hyun;Shin, Hyun-Jae
    • Journal of Mushroom
    • /
    • v.20 no.3
    • /
    • pp.163-167
    • /
    • 2022
  • Bio-based alternative leathers may be produced from biomass fiber, protein polymers, bacterial cellulose, and mushroom mycelia. Of these components, mushroom mycelia are of greatest interest. In this study, the potential of Fomes fomentariusas a mushroom mycelial mat was confirmed, and the optimal strain for the development of the mycelial mat was determined. Moreover, the quality of the mycelial mat was improved by identifying an efficient culture method to increase productivity. Mutant strains whose independence was verified were obtained by treatment with gamma irradiation under various conditions. Biofilm formation by the resulting strains was examined in sawdust and liquid media and the characteristics of the biofilms were analyzed. The biofilm of the mutant strains showed results that were similar to or better than the biofilms of longevity and cypress mushrooms. These findings are expected to be utilized in future research aimed at discovering new biomaterials using mushroom mycelia.

Recovery of Lipids from Chlorella sp. KR-1 via Pyrolysis and Characteristics of the Pyrolysis Oil (Chlorella sp. KR-1 열분해에 의한 지질 회수 및 열분해 오일 특성 분석)

  • Lee, Ho Se;Jeon, Sang Goo;Oh, You-Kwan;Kim, Kwang Ho;Chung, Soo Hyun;Na, Jeong-Geol;Yeo, Sang-Do
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.672-677
    • /
    • 2012
  • Lipids in microalgal biomass were recovered by using pyrolysis method. The pyrolysis experiments of two Chlorella sp. KR-1 samples, which have triglyceride contents of 10.8% and 36.5%, respectively were carried out at $600^{\circ}C$ to investigate the effects of lipid contents in the cells on the reaction characteristics. The conversion and liquid yield of the lipid-rich sample were higher than those of the lipid-lean sample since its carbon to hydrogen ratio was low. There were low molecular weight organic acids, ketones, aldehydes and alcohols in the liquid products from both KR-1 samples, but the pyrolysis oil of the lipid-rich sample was abundant in free fatty acids, particularly palmitic acid, oleic acid and stearic acid while the content of nitrogen containing organic compounds was low. The microalgal pyrolysis oil had two layers composed of the light hydrophobic fraction and the heavy hydrophilic fraction. The light fraction might be originated from triglycerides and the heavy fraction might be from carbohydrates and proteins. In the light fraction of the liquid products, there were considerable linear alkanes such as pentadecane and heptadecane as well as free fatty acids, implying that deoxygenation reaction including decarboxylation was occurred during the pyrolysis. The yield of the liquid products from the pyrolysis of the KR-1 sample having triglyceride content of 36.5% was 56.9% and the light fraction in the liquid products was 68.2%. Also more than 80% of the light fraction was free fatty acids and pure hydrocarbons, thus showing that most triglycerides could be extracted in the form of suitable raw materials for biofuels.

Phosphorus Removal and Operating Performance of Mesh Filtration Bio-reactor with the Addition of Alum (Alum 주입 메쉬 침지 여과분리형 생물반응조의 운전 특성과 인 제거)

  • Jung, Yong-Jun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.458-463
    • /
    • 2005
  • Considering the characteristics of a filtration bio-reactor equipped with a mesh filter module which can effectively maintain high concentration of biomass and enhanced solid-liquid separation performance, the hybrid process of filtration bio-reactor combined with coagulation was investigated to get improved filtration characteristics as well as water quality in this work. Two bio-reactors (Run-1 & Run-2) were operated under the following conditions: working volume of 25 L, continuous loading of a synthetic wastewater (BOD: 200 mg/L, T-N: 50 mg/L, T-P: 5 mg/L), where an appropriate amount of alum ($Al_2(SO_4)_3{\cdot}18H_2O$) was added once a day into the reactor (Run-2). In the system without using a alum (Run-1), the clogging of mesh filter module was observed two times through 85 days of whole operation. Meanwhile, the filter module did not clog even at higher MLSS concentration (6,000~12,000 mg/L) and the stable filtration (0.7 mid) was continued in the case of using a alum. Due to the stable formation of cake layers, BOD and SS were shown below 6 and 3 mg/L, respectively. T-P and pH of the effluent were changed because of the intermittent addition of the alum. In the case of Al/P=2.5, the average T-P removal efficiency per day was 85.2% and the average T-P concentration of the effluent was 0.3 mg/L. However, the removal efficiency of phosphate was influenced by pH in the reactor.

Catalysts for Hydroisomerization of Synthesis-Oil for Bio-jet fuel Production (Bio-jet fuel 제조용 합성원유 수첨이성화 촉매)

  • Yun, So-Young;Lee, Eun-Ok;Park, Young-Kwon;Jeon, Jong-Ki;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.795-796
    • /
    • 2010
  • Interest has been increasing worldwide in Fischer-Tropsch synthesis (F-T) as a method of producing synthetic liquid fuels from biomass. Hydroisomerization of $C_7-C_{15}$ paraffins applies to production of diesel fuel with high cetane number and improved cold flow properties, such as viscosity, pour point and freezing point. The commercial products such as fuel jet produced from F-T synthesis should have low freezing and pour points. In this study, our major aim is to develop a catalyst for hydroisomerization of synthesis-oil for bio-jet fuel. Effects of zeolites and platinum loading on hydroisomerization of dodecane were investigated as a model reaction in a batch reactor.

  • PDF

Effect of Catalyst Type and Reaction Medium on Fischer-Tropsch Synthesis for Production of Hydrocarbon from Syngas (합성가스로부터 탄화수소제조를 위한 피서트롭스 반응에 관한 촉매 종류 및 반응매체의 영향)

  • Kim, Chul-Ung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Koh, Jae-Cheon;Chae, Ho-Jeong;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.658-663
    • /
    • 2010
  • With petroleum reserves dwindling, interest has been increasing worldwide in Fischer-Tropsch synthesis (FT) as a method of producing synthetic liquid fuels and chemicals from coal, natural gas or biomass. In general, FT synthesis is operated through the gas phase fixed-bed reaction system. Recently, there are lots of study in supercritical fluid due to unique characteristics such as the quick diffusion of reactant gas, effective removal of reaction heat, and the in-situ extraction of high molecular weight hydrocarbon, such as wax. In this study, our major aim is to obtain a deeper insight into the effect of the type of support on the reaction performance over a supported cobalt catalyst in a fixed bed reactor.

  • PDF

Improvement of the Fractional Precipitation Process for the Purification of (+)-Dihydromyricetin ((+)-Dihydromyricetin 정제를 위한 분별침전공정 개선)

  • Lim, Min-Kyoung;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2014
  • Fractional precipitation is a simple method for purifying (+)-dihydromyricetin extracted from biomass. However, the fractional precipitation process has been inherently problematic due to the lengthy precipitation time that is required. The fractional precipitation time was shortened and (+)-dihydromyricetin yield was improved by increasing the surface area per working volume (S/V) of the reacting solution through the addition of a cation exchange resin (Amberlite 200, Amberlite IR 120Na, Amberlite IR 120H, or Amberlite IRC 50). Most of the (+)-dihydromyricetin (>90%) could be obtained after about 16 h of fractional precipitation using Amberlite 200. Since high-purity (+)-dihydromyricetin can be obtained at a high yield and the precipitation time can be reduced by increasing the surface area available for precipitation, this improved method is expected to minimize solvent usage and the size and complexity of the high performance liquid chromatography operation required for (+)-dihydromyricetin purification.

A Study on the Fischer-Tropsch Synthesis for Production of Hydrocarbon from Syngas under Gas Phase and Supercritical Phase (가스 및 초임계반응하에서 합성가스로부터 탄화수소 제조를 위한 피서트롭스 반응에 관한 연구)

  • Kim, Chul-Ung;Jeong, Soon-Yong;Jeong, Kwang-Eun;Chae, Ho-Jeong;Kim, Tae-Wan;Park, Hyun-Joo;Lee, Sang-Bong;Kim, Jung-Hyun;Han, Jeong-Sik;Jeong, Byung-Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.15-21
    • /
    • 2011
  • With petroleum reserves dwindling, interest has been increasing worldwide in Fischer-Tropsch synthesis (FT) as a method of producing synthetic liquid fuels and chemicals from coal, natural gas or biomass. In general, FT synthesis is operated through the gas phase fixed-bed reaction system. Recently, there are lots of study in supercritical fluid due to unique characteristics such as the quick diffusion of reactant gas, effective removal of reaction heat, and the in-situ extraction of high molecular weight hydrocarbon, such as wax. In this study, our major aim is to obtain a deeper insight into the effect of the type of support on the reaction performance over a supported cobalt catalyst in a fixed bed reactor.

Emission Characteristics of Fine Particles from Thermal Power Plants (화력발전소의 미세먼지 배출특성)

  • Park, Sooman;Lee, Gayoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.455-460
    • /
    • 2020
  • In order to identify the characteristics of fine particle emissions from thermal power plants, this study conducted measurement of the primary emission concentration of TPM, PM10 and PM2.5 according to Korea standard test method (ES 01301.1) and ISO 23210 method (KS I ISO 23210). Particulate matters were sampled in total 74 units of power plants such as 59 units of coal-fired power plants, 7 units of heavy oil power plants, 2 units of biomass power plant, and 6 units of liquid natural gas power plants. The average concentration of TPM, PM10, PM2.5 by fuel are 3.33 mg/m3, 3.01 mg/m3, 2.70 mg/m3 in coal-fired plant, 3.02 mg/m3, 2.99 mg/m3, 2.93 mg/m3 in heavy oil plant, 0.114 mg/m3, 0.046 mg/m3, 0.036 mg/m3 in LNG plant, respectively. These results of TPM, PM10 and PM2.5 were satisfied with the standards of fine dust emission allowance in all units of power plants, respectively. Also, this study evaluated the characteristics of fine particle emissions by conditions of power plants including generation sources, boiler types and operation years and calculated emission factors and then evaluated fine particle emissions by sources of electricity generation.

Degradation Properties and Production of Fuels from Hemicellulose by Pyrolysis-liquefaction (열분해액화반응에 의한 헤미셀룰로오스의 분해특성 및 연료물질 생성)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • Hemicellulose, consisteing of pentose as xylose and mannose, is usable as high octane fuels and heavy oil additives if depolymerized to monomer unit. In this study, thermochemical degradation by pyrolysis-liquefaction of hemicellulose, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperatures from $200^{\circ}C$ to $400^{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. Ketones, as 2,3-dimethyl-2-cyclopenten-1-one, 2,3,4-trimethyl-2-cyclopentan-1-one, and 2-methyl-cyclopentanone, could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels. Combustion heating value of liquid products obtained from thermochemical conversion processes of hemicellulose was in the range of 6,680~7,170 cal/g. After 40 min of reaction at $400^{\circ}C$ in pyrolysis-liquefaction of hemicellulose, the energy yield and mass yield were as high as 72.2% and 41.2 g oil/100 g raw material, respectively.

Effect of Irrigation of River Water and Swine Slurry Liquid Fertilizer on Kenaf (Hibiscus cannabinus L.) Growth Cultivated Using Soil Moisture Control System in Reclaimed Land (자동 수분 제어시스템을 이용한 간척지 케나프 재배시 하천수 및 액비 관개 효과)

  • Kang, Chan-Ho;Lee, In-Sok;Lee, Jin-Jae;Kim, Hee-Jun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.87-96
    • /
    • 2021
  • Information and Communication Technology (ICT) remote soil moisture control system including soil sensing, automatic water supply chain, and remote alarming system was established on reclaimed land and operated stably. The system was operated using river water around the reclaimed land without fertilizer. On applying this system to control soil moisture, the kenaf germination rate was improved up to two times. Kenaf biomass was 4,748 kg/10a and was higher than that of untreated soil moisture management. When the nutritious liquid fertilizer was used, kenaf yield reached 8,390 kg/10a, which was lower than 10,848 kg/10a of the non-reclaimed land treated with standard chemical fertilizers. As the soil moisture was managed stably through the ICT remote soil moisture control system, the quality of the kenaf crop was improved, resulting in a 7% increase in dry weight, and a 11.5% increase in plant hardness. The estimated kenaf yield was 5,039 kg/10a when 800 tonnes of water were supplied by the ICT remote soil moisture control system with the stream water around Saemangeum reclaimed land without chemical fertilizers and organic matter.