DOI QR코드

DOI QR Code

Applicability of Fomes fomentariusfor the formation of a mycelial mat

균사체 매트 제작을 위한 말굽버섯의 응용 가능성

  • Kim, Hyun-Suk (Jeollanamdo Forest Resources Research Institute) ;
  • Oh, Deuk-Sil (Jeollanamdo Forest Resources Research Institute) ;
  • Jung, Young-Hyun (Department Chemical Engineering, Graduate School of Chosun University) ;
  • Shin, Hyun-Jae (Department Chemical Engineering, Graduate School of Chosun University)
  • 김현석 (전라남도산림자원연구소) ;
  • 오득실 (전라남도산림자원연구소) ;
  • 정용현 (조선대학교 대학원 화학공학과) ;
  • 신현재 (조선대학교 대학원 화학공학과)
  • Received : 2022.09.23
  • Accepted : 2022.09.26
  • Published : 2022.09.30

Abstract

Bio-based alternative leathers may be produced from biomass fiber, protein polymers, bacterial cellulose, and mushroom mycelia. Of these components, mushroom mycelia are of greatest interest. In this study, the potential of Fomes fomentariusas a mushroom mycelial mat was confirmed, and the optimal strain for the development of the mycelial mat was determined. Moreover, the quality of the mycelial mat was improved by identifying an efficient culture method to increase productivity. Mutant strains whose independence was verified were obtained by treatment with gamma irradiation under various conditions. Biofilm formation by the resulting strains was examined in sawdust and liquid media and the characteristics of the biofilms were analyzed. The biofilm of the mutant strains showed results that were similar to or better than the biofilms of longevity and cypress mushrooms. These findings are expected to be utilized in future research aimed at discovering new biomaterials using mushroom mycelia.

본 연구에서는 균막 형성을 위해 기존에 활용하고 있는 버섯 종과 다른 말굽버섯을 활용하였으며, 다양한 조건으로 감마선 조사를 진행하여 독립성이 검증된 변이균주를 획득하였다. 확보된 균주들의 톱밥배지 및 액체배지에서의 균막 형성을 관찰하고 각 균막의 특성을 조사한 결과 장수버섯, 시루송편버섯의 균막과 비교하여 비슷하거나 더 좋은 결과를 보인 균주를 확인할 수 있었다. 또한 톱밥배지보다는 액체배지에서 배양 했을 때 균막의 활용도 및 경제성이 더 높은 것으로 판단된다. 본 결과는 버섯 균사체를 이용한 대체육, 바이오소재 발굴을 위한 연구에 활용할 수 있을 것으로 여겨진다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) '산림과학기술 연구개발사업 (2020191B10-2022-BA01)의 지원에 의하여 이루어진 것입니다.

References

  1. Antinori ME, Ceseracciu L, Mancini G, Heredia-Guerrero JA, Athanassiou A. 2020. Fine-tuning of physicochemical properties and growth dynamics of mycelium-based materials. ACS Appl Bio Mater3: 1044-1051.
  2. Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, Mancini G, Debellis D, Athanassiou A. 2021. Advanced mycelium materials as potential self-growing biomedical scaffolds. Sci Rep11: 1-14.
  3. Appels FV, van den Brandhof JG, Dijksterhuis J, de Kort GW, Wosten HA. 2020. Fungal mycelium classified in different material families based on glycerol treatment. Commun Biol3: 1-5.
  4. Bak W. C, Ka KH, Kim WS, Ko HG, Koo CD, Hong GS, Min, KT, Oh DS, Ryu SR. 2011. Forestry mushroom sphere product of study presentation. Korea Forest Res Instit116: 34-42.
  5. Bustillos J, Loganathan A, Agrawal R, Gonzalez BA, Perez MG, Ramaswamy S, Benjamin B, Agarwal A. 2020. Uncovering the mechanical, thermal, and chemical characteristics of biodegradable mushroom leather with intrinsic antifungal and antibacterial properties. ACS Appl Bio Mater3: 3145-3156.
  6. Field JA, de Jong E, Feijoo-Cost, G, de Bont JA. 1993. Screening for ligninolytic fungi applicable to the biodegradation of xenobiotics. Trends Biotechnol11: 44-49.
  7. Holt GA, Mcintyre G, Flagg D, Bayer E, Wanjura JD, Pelletier MG. 2012. Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts. J Biobased Mater Bioenergy6: 431-439.
  8. Jones M, Gandia A, John S, Bismarck A. 2021. Leather-like material biofabrication using fungi. Nat Sustain4: 9-16.
  9. Jhune CS, Kong WS, Jang KY, Yoo YB, Do ES, Chun SC. 2004. Effect of CaCO3treatment on cultivation of oyster mushroom. J Mushrooms2: 69-75.
  10. Jeong YH, Kim DS, Kim HS, Oh DS, Shin HJ. 2022. Effect of culture method and medium components on Trametes orientalismycelium mat formation. J Mushrooms20(2): 69-77.
  11. Kim DS, Kim YW, Kim KJ, Shin HJ. 2017. Research trend and product development potential of fungal myceliumbased composite materials. KSBB J32: 174-178.
  12. Kwon HJ, Kong WS. 2006. Proton beam sensitivity of basidiospore and mycelium in Pleurotus ostreatus. Kor J Mycol34: 34-38.
  13. Ma Y, Guan CY, Meng XJ. 2014. Biological characteristics for mycelial growth of Agaricus bisporus.Appl Mech Mater 508: 297-302. https://doi.org/10.4028/www.scientific.net/AMM.508.297
  14. Mekonnen T, Mussone P, Khalil H, Bressler D. 2013. Progress in bio-based plastics and plasticizing modifications. J Mater Chem A1: 13379-13398.
  15. Park JK, Park KW, Shin KS. Lee CM. Seok SJ, Kim JB, Koo BS. 2013. Isolation and chemical analysis of potent anti-complementary polysaccharides from fruiting bodies of the Fomes fomentarius. KJMB41(2): 198-206.
  16. Raman J, Kim DS, Kim HS, Oh DS, Shin HJ. 2022. Mycofabrication of mycelium-based leather from brownrot fungi. J Fungi8: 317.