• Title/Summary/Keyword: Biomass materials

Search Result 378, Processing Time 0.023 seconds

Development of Glucoamylase & Simultaneous Saccharification and Fermentation Process for High-yield Bioethanol (고효율 바이오 에탄올 생산을 위한 당화효소 개발 및 동시당화발효 공정 연구)

  • Choi, Gi-Wook;Han, Min-Hee;Kim, Yule
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.499-503
    • /
    • 2008
  • The bioethanol for use as a liquid fuel by fermentation of renewable biomass as an alternative to petroleum is important from the viewpoint of global environmental protection. Recently, many scientists have attempted to increase the productivity of bioethanol process by developing specific microorganism as well as optimizing the process conditions. In the present study, which is based on our previous investigation on the pretreatment process, theproductivity of bioethanol obtained from simultaneous saccharification and fermentation (SSF) process was compared between various domestic materials including barley, brown rice, corn and sweet potato. Additionally, Solid glucoamylase (SGA; developed in Changhae Co.), from modified strain with UV, was used. The result was compared to commercial glucoamylase (GA). It was observed that the fermentation rate was increased together with the yield which can be derived from the final ethanol concentration. Especially, in the case of brown rice, compared to the experimental results using GA, the final ethanol concentration was 1.25 times higher and 18.4 g/L of the yield was increased. Also, the time required for reaching 95% of the maximum ethanol concentration is significantly reduced, which is approximately 36 hours, compared to 88 hours using GA. It means that SGA has excellent saccharogenic power.

Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation (습식산화반응을 통한 중력식반응기로부터의 슬러지 처리 및 유기산 생산 공정모사)

  • Park, Gwon Woo;Seo, Tae Wan;Lee, Hong-Cheol;Hwang, In-Ju
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.248-254
    • /
    • 2016
  • Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

Synthetic Musk Compounds Removal Using Biological Activated Carbon Process in Drinking Water Treatment (정수처리용 생물활성탄 공정에서의 인공 사향물질의 제거 특성)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Dong-Hoon;Ryu, Dong-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.3
    • /
    • pp.195-203
    • /
    • 2012
  • In this study, The effects of three different biological activated carbon (BAC) materials (each coal, coconut and wood based activated carbons) and anthracite, empty bed contact time (EBCT) and water temperature on the removal of MK, HHCB and AHTN in BAC filters were investigated. Experiments were conducted at three water temperatures (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the synthetic musk compounds (SMCs) removal in BAC columns. The kinetic analysis suggested a first-order reaction model for MK, HHCB and AHTN removal at various water temperatures (5, 15 and $25^{\circ}C$). The pseudo-first-order biodegradation rate constants and half-lives were also calculated for MK, HHCB and AHTN removal at 5, 15 and $25^{\circ}C$. The pseudo-first-order biodegradation rate constants and half-lives of MK, HHCB and AHTN ranging from 0.0082 $min^{-1}$ to 0.4452 $min^{-1}$ and from 1.56 min to 84.51 min could be used to assist water utilities in designing and operating BAC filters for SMCs removal.

Removal Characteristics of Tetracycline, Oxytetracycline, Trimethoprime and Caffeine in Biological Activated Carbon Process (생물활성탄 공정에서 Tetracycline, Oxytetracycline, Trimethoprime 및 Caffeine 제거특성)

  • Son, Hee-Jong;Hwang, Young-Do;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.186-192
    • /
    • 2009
  • In this study, The effects of three different activated carbon materials (each coal, coconut and wood based activated carbons), empty bed contact time (EBCT) and water temperature on the removal of pharmaceutical 4 species (oxytetracycline, tetracycline, trimethoprime and caffeine) in BAC filters were investigated. Experiments were conducted at three water temperature (5, 15 and $25^{\circ}C$) and four EBCTs (5, 10, 15 and 20 min). The results indicated that coal based BAC retained more attached bacterial biomass on the surface of the activated carbon than the other BAC, increasing EBCT or increasing water temperature increased the pharmaceutical 4 species removal in BAC columns. In the coal-based BAC columns, removal efficiencies of oxytetracycline and tetracycline were 87~100% and removal efficiencies of trimethoprime and caffeine were 72~99% for EBCT 5~20 min at $25^{\circ}C$. The kinetic analysis suggested a firstorder reaction model for pharmaceutical 4 species removal at various water temperatures (5~$25^{\circ}C$). The pseudo-first-order reaction rate constants and half-lives were also calculated for pharmaceutical 4 species removal at 5~$25^{\circ}C$. The reaction rate and half-lives of pharmaceutical 4 species ranging from 0.0360~0.3954 $min^{-1}$ and 1.75 to 19.25 min various water temperatures and EBCTs, could be used to assist water utilities in designing and operating BAC filters.

Anti-inflammatory activity of a sulfated polysaccharide isolated from an enzymatic digest of brown seaweed Sargassum horneri in RAW 264.7 cells

  • Sanjeewa, Kalu Kapuge Asanka;Fernando, Ilekkuttige Priyan Shanura;Kim, Eun-A;Ahn, Ginnae;Jee, Youngheun;Jeon, You-Jin
    • Nutrition Research and Practice
    • /
    • v.11 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • BACKGROUND/OBJECTIVES: Sargassum horneri is an edible brown alga that grows in the subtidal zone as an annual species along the coasts of South Korea, China, and Japan. Recently, an extreme amount of S. horneri moved into the coasts of Jeju Island from the east coast of China, which made huge economic and environmental loss to the Jeju Island. Thus, utilization of this biomass becomes a big issue with the local authorities. Therefore, the present study was performed to evaluate the anti-inflammatory potential of crude polysaccharides (CPs) extracted from S. horneri China strain in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. MATERIALS/METHODS: CPs were precipitated from S. horneri digests prepared by enzyme assistant extraction using four food-grade enzymes (AMG, Celluclast, Viscozyme, and Alcalase). The production levels of nitric oxide (NO) and pro-inflammatory cytokines, including tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-$1{\beta}$ were measured by Griess assay and enzyme-linked immunosorbent assay, respectively. The levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), nuclear factor (NF)-${\kappa}B$, and mitogen-activated protein kinases (MAPKs) were measured by using western blot. The IR spectrums of the CPs were recorded using a fourier transform infrared spectroscopy (FT-IR) spectrometer. RESULTS: The polysaccharides from the Celluclast enzyme digest (CCP) showed the highest inhibition of NO production in LPS-stimulated RAW 264.7 cells ($IC_{50}$ value: $95.7{\mu}g/mL$). Also, CCP dose-dependently down-regulated the protein expression levels of iNOS and COX-2 as well as the production of inflammatory cytokines, including TNF-${\alpha}$ and IL-$1{\beta}$, compared to the only LPS-treated cells. In addition, CCP inhibited the activation of NF-${\kappa}B$ p50 and p65 and the phosphorylation of MAPKs, including p38 and extracellular signal-regulated kinase, in LPS-stimulated RAW 264.7 cells. Furthermore, FT-IR analysis showed that the FT-IR spectrum of CCP is similar to that of commercial fucoidan. CONCLUSIONS: Our results suggest that CCP has anti-inflammatory activities and is a potential candidate for the formulation of a functional food ingredient or/and drug to treat inflammatory diseases.

Feasibility Study on Use of Livestock Manure as Solid Refuse Fuel by Torrefaction Method (반탄화 기술을 이용한 가축분뇨의 고형연료화 가능성 연구)

  • Lee, Yongho;Sanjusren, Oyun-Erdene;Pak, Daewon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.560-571
    • /
    • 2019
  • In the study, used torrefaction method to make sample from organic waste of livestock manure for Biomass-solid refuse fuel feasibility study of torrefied materials. Fallen leaves and sawdust added in torrefaction methods with livestock manure, that additives were used to improve the lower calorific value of livestock manure. During the torrefaction experiment, the reaction temperature was varied from $200^{\circ}C$ to $260^{\circ}C$ and $20^{\circ}C$ to prepare a sample. The reaction time was divided into 15, 30 and 45min to determine the effect of the experimental conditions on the torrified products. The additives were mixed at a ratio of 9:1 and 8:2 (Cow manure: additive) relative to the livestock manure. Through this experiment, it was obtained 3,500 kcal/kg standard product of solid fuel produced in Korea and improved product was obtained by adding additives.

Biolagical Activity on Extracts of Japanese Anise(Illicium Anisatum L.) Leaves and Twigs (붓순나무 잎과 가지의 추출물에 대한 생리활성 평가)

  • Shinn, Seong-Whan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.311-316
    • /
    • 2019
  • Japanese anise (Illicium anisatum L.) leaves and twigs were extracted with 50 % aqueous acetone three times. After filtration, the extracts were fractionated with n-hexane, chloroform, ethyl acetate and $H_2O$, and then freeze dried after condensation. Then antioxidation and antiviral activity were evaluated on each fractions. In the antioxidative activities, the results indicated high activity in the EtOAc soluble fraction of the leaves and the EtOAc and $H_2O$ soluble fractions of the twigs. It showed much higher antioxidative value compare to the controls, BHT and ${\alpha}$-tocopherol. In the antiviral activities, the all fractions were negative effects in HRV 1B and EV 71, but good in Influenza PR8. The activities of the crude extracts of the leaves and twigs showed more than 80% activity at the concentration of $10{\mu}g/mL$ and $50{\mu}g/mL$, respectively, and the activities of the EtOAc and $H_2O$ soluble fractions were close to 80%. Based on the above results, the extracts of Japanese anise may be applied for one of the natural biomass sources that can be used as an antioxidant and an antiviral substance.

Immobilization of As and Pb in Contaminated Soil Using Bead Type Amendment Prepared by Iron NanoparticlesImpregnated Biochar (철 나노 입자가 담지된 바이오차 기반 비드 형태 안정화제를 이용한 비소 및 납 오염토양의 안정화)

  • Choi, Yu-Lim;Kim, Dong-Su;Kang, Tae-Jun;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.4
    • /
    • pp.247-257
    • /
    • 2021
  • In this work, Iron Nano-Particles Impregnated BioChar/bead (INPBC/bead) soil amendment was developed to increase biochar's reactivity to As in soil and preventing possible wind loss. Prior to preparation of INPBC/bead, INPBC was produced utilizing lignocellulosic biomass and Fe(III) solution in a hydrothermal method, followed by a calcination process. Then, the bead type amendment, INPBC/bead was produced by cross-linking reaction of alginate with INPBC. FT-IR, XRD, BET, and SEM-EDS analyses were utilized to characterize the as-synthesised materials. The particle size range of INPBC/bead was 1-4 mm, and different oxygen-containing functional groups and Fe3O4 crystalline phase were produced on the surface of INPBC/bead, according to the characterization results. The soil cultivation test was carried out in order to assess the stabilization performance of INPBC/bead utilizing As and Pb-contaminated soil obtained from an abandoned mining location in South Korea. After 4 weeks of culture, TCLP and SPLP extraction tests were performed to assess the stabilization efficacy of the amendment. The TCLP and SPLP findings revealed that raising the application ratio improved stabilizing efficiency. The As stabilization efficiency was determined to be 81.56 % based on SPLP test findings for a 5% in (w/w) INPBC/bead treatment, and the content of Pb in extracts was reduced to the limit of detection. According to the findings of this study, INPBC/bead that can maintain pH of origin soil and minimize wind loss might be a potential amendment for soil polluted with As and heavy metals.

Reduction of VOCs and the Antibacterial Effect of a Visible-Light Responsive Polydopamine (PDA) Layer-TiO2 on Glass Fiber Fabric (Polydopamine (PDA)-TiO2 코팅 유리섬유 직물을 이용한 VOCs의 저감 성능 및 항균성 연구)

  • Park, Seo-Hyun;Choi, Yein;Lee, Hong Joo;Park, Chan-gyu
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.6
    • /
    • pp.540-547
    • /
    • 2021
  • Background: Indoor air pollutants are caused by a number of factors, such as coming in from the outside or being generated by internal activities. Typical indoor air pollutants include nitrogen dioxide and carbon monoxide from household items such as heating appliances and volatile organic compounds from building materials. In addition there is carbon dioxide from human breathing and bacteria from speaking, coughing, and sneezing. Objectives: According to recent research results, most indoor air pollution is known to be greatly affected by internal factors such as burning (biomass for cooking) and various pollutants. These pollutants can have a fatal effect on the human body due to a lack of ventilation facilities. Methods: We fabricated a polydopamine (PDA) layer with Ti substrates as a coating on supported glass fiber fabric to enhance its photo-activity. The PDA layer with TiO2 was covalently attached to glass fiber fabric using the drop-casting method. The roughness and functional groups of the surface of the Ti substrate/PDA coated glass fiber fabric were verified through infrared imaging microscopy and field emission scanning electron microscopy (FE-SEM). The obtained hybrid Ti substrate/PDA coated glass fiber fabric was investigated for photocatalytic activity by the removal of ammonia and an epidermal Staphylococcus aureus reduction test with lamp (250 nm, 405 nm wavelength) at 24℃. Results: Antibacterial properties were found to reduce epidermal staphylococcus aureus in the Ti substrate/PDA coated glass fiber fabric under 405 nm after three hours. In addition, the Ti substrate/PDA coated glass fiber fabric of VOC reduction rate for ammonia was 50% under 405 nm after 30 min. Conclusions: An electron-hole pair due to photoexcitation is generated in the PDA layer and transferred to the conduction band of TiO2. This generates a superoxide radical that degrades ammonia and removes epidermal Staphylococcus aureus.

Effect of Growth and Nitrogen Use Efficiency to Chinese Cabbage under Fermented Organic Fertilizer Treatment with Domestic Resource (국내 자원으로 제조한 발효 유기질비료가 배추의 생육 및 질소이용효율에 미치는 영향)

  • You-Jin Kim;So-Hui Kim;Sang-Min Lee;Cho-Rong Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.83-91
    • /
    • 2023
  • This study investigate growth responses of Chinese cabbage and nitrogen use efficiency (NUE) to application of fermented organic fertilizer produced from domestic organic resources for developing alternative materials instead of imported castor oil meal. Two types of fermented fertilizers (Fermented Organic Fertilizer A (OFA) and Fermented Organic Fertilizer B (OFB)) were produced by mixing distillers dried grains 30%, sesame cake 30%, rice bran 20% and fish meal 20% under different fermentation conditions. Treatment consisted of OFA is fermented for 21 days on plastic greenhouse, OFB is fermented for 5 days on 40℃, and MOF (Mixed Organic Fertilizer) is a fertilizer made with castor bean as the main ingredient. OFA, OFB and MOF were applied at the rate of 320 kg N/ha. Chinese cabbages were cultivated from Aug. to Nov. in 2022. Growth and yield of Chinese cabbage were no significant differences among all treatments except control (non-fertilized, NF). However, NUE of Chinese cabbage was higher the fermented fertilizer treatment (OFB: 81.4%, OFA: 79.1%) than the MOF (65.3%). It was observed that urease activity in the fermented fertilizer treatment was significantly higher than the MOF. This result confirmed that fermented fertilizers have similar effect on growth and yield with the MOF and could improve the NUE of crop.