• Title/Summary/Keyword: Biomass hydrolysate

Search Result 40, Processing Time 0.032 seconds

Characteristics of Acid-hydrolysis and Ethanol Fermentation of Laminaria japonica (다시마의 산 가수분해와 에탄올 발효 특성)

  • Na, Choon-Ki;Song, Myoung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.50 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • In order to study the utilization of brown seaweed Laminaria japonica as an alternative renewable feedstock for bioethanol production, the properties of acid hydrolysis and ethanol fermentation were investigated. The acid hydrolysis enhanced the final yield of fermentable sugars, which led great increase of ethanol productivity. The maximum yield of reducing sugars reached 135 mg/g-dry Laminaria japonica after 1.0N sulfuric acid-hydrolysis at $130^{\circ}C$ for 6 h. The Saccharomyces cerevisiae (ATCC 24858) could ferment $C_6$-sugars like glucose, galactose and mannose into ethanol, but not $C_5$-sugars like arabinose and xylose. Optimal fermentation time varied with sugars; 48 h for glucose, 72 h for galactose, and 96 h for mannose. Nevertheless, the ethanol yield from the hydrolysate reached 242 mg/g-dry Laminaria japonica after fermentation by the S. cerevisiae at $35^{\circ}C$ for 96 h, which corresponds to approximately 4 times more than the theoretical yield from total reducing sugars in the hydrolysates. It indicates that the non-reducing sugars or oligosaccharides dissolved in the hydrolysate played an important role in producing bioethanol. The ethanol concentration linearly increased from 2.4 to 9.2 g/L, while the ethanol yield per dry weight of biomass decreased from 242 to 185 mg/g, with increasing the ratio of biomass to acid solution from 1 to 5% (w/v). The bioethanol yield estimated was approximately 7,400~9,600 kg/ha/year, and indicated that Laminaria japonica is a promissing feedstock for bioethanol production.

Improved Ethanol Production from Deacetylated Yellow Poplar (Liriodendron tulipifera) by Detoxification of Hydrolysate and Semi-SSF (에탄올 향상을 위한 탈아세틸화 백합나무 당화액의 발효저해물질 제거와 semi-동시당화발효)

  • Kim, Jo-Eun;Lee, Jae-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.494-500
    • /
    • 2016
  • In order to remove acetyl group from yellow poplar, deacetylation was performed using sodium hydroxide (NaOH) prior to oxalic acid pretreatment. During the deacetylation ($60^{\circ}C$ for 80 min, 0.8% NaOH), most of the acetyl group were removed from hemicellulose. Simultaneous saccharification and fermentation (SSF) and semi-SSF were carried out based on solid loading (10, 12.5, 15%) of deacetylated biomass and pre-hydrolysis with enzymes (0, 6, 12, 24 h). The highest ethanol was obtained as 26.73 g/L after 120 h when 10% of biomass was used for SSF. It is corresponding to 88.41% of theoretical ethanol yield. At the 12.5% and 15% of biomass loading, the highest ethanol was obtained from 6 h pre-hydrolysis. It was 32.34 g/L and 27.15 g/L, respectively, and corresponding to ethanol yield of 85.58 and 59.87%. In order to remove fermentation inhibitors from hydrolysates, overliming was performed using calcium hydroxide ($Ca(OH)_2$). The highest ethanol was 5.28 g/L after 72 h of fermentation.

Production Conditions and Properties of Glucose Isomerase from Streptomyces griseolus (Streptomyces griseolus기원의 포도당 이성화효소의 생성 조건과 성질)

  • 임번삼;전문진
    • Korean Journal of Microbiology
    • /
    • v.21 no.2
    • /
    • pp.51-60
    • /
    • 1983
  • Cultural characteristics of Strptomyces griseolus isolated from the soil were investigated. This strain was disclosed to utilize D-xylose, and D-glactose in preference order as a carbon source with the formation of glucose isomerase. The addition of sweet potato starch also proved effective promoting the total enzyme activity measured at 29% higher than the control. Corn cob, one of waste agricultural resources, was hydrolyzed in 2~3% $H_2SO_4$ solution at $100^{\circ}C$, 3~5 hours to produce a xylose syrup which gave rise to the recovery of 19.9% in a batch system and 28.2% in a repeated system. By the addition of both 2% of xylose syrup(Be'28) prepared by and us 65% of corn steep liquor (total nitrogen 1.2%), enzyme induction was maximized. The enzyme activity was stimulated by the xylose and the cell growth by the C.S.L. Also, remarkable increase of enzyme activity was noticed by the addition of protein acid hydrolysate 86.2% higher than the control. $QO_2$ of the biomass cultured in 30L capacity jarfermentor recorded low oxygen requirement of 251.2 1/hr. Maximum activity of glucose isomerase was observed noted at the 9th hour after inoculation which is 2 hours faster than the stationery was observed noted at the 9th hour after inoculation which is 2 hours faster than the stationery phase of the biomass growth. Glucose isomerase from the strain was activated by adding the $Co^{++}\;and\;Mg^{++}$ with optimum temperature of $73^{\circ}C$ and pH of 7.2. Conversion ratio of 60% glucose to frutose was 42.5% after 70 hours reaction.

  • PDF

Optimization of Dilute Acid Pretreatment of Rapeseed straw for the Bioethanol Production (바이오에탄올 생산을 위한 농산부산물(유채짚)의 묽은 산 전처리 공정 최적화)

  • Jeong, Tae-Su;Won, Kyung-Yoen;Oh, Kyeong-Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.67-70
    • /
    • 2008
  • Biological conversion of biomass into fuels and chemicals requires hydrolysis of the polysaccharide fraction into monomeric sugars. Hydrolysis can be performed enzymatically, and with dilute or concentrate mineral acids. In this study, dilute sulfuric acid used as a catalyst for the hydrolysis of rapeseed straw. The purpose of this study is to optimize the hydrolysis process in a 15ml bomb tube reactor and investigate the effects of the acid concentration, temperature and reaction time on the hemicellulose removal and consequently on the production of sugars (xylose, glucose and arabinose) as well as on the formation of by-products (furfural, 5-hydroxymethylfurfural and acetic acid). Statistical analysis was based on a model composition corresponding to a $3^3$ orthogonal factorial design and employed the response surface methodology (RSM) to optimize the hydrolysis conditions, aiming to attain maximum xylose extraction from hemicellulose of rapeseed straw. The obtained optimum conditions were: acid concentration of 0.77%, temperature of $164^{\circ}C$ with a reaction time of 18min. Under these conditions, 75.94% of the total xylose was removed and the hydrolysate contained 0.65g $L^{-1}$ Glucose, 0.36g $L^{-1}$ Arabinose, 3.59g $L^{-1}$ Xylose, 0.51g $L^{-1}$ Furfural, 1.36g $L^{-1}$ Acetic acid, and 0.08g $L^{-1}$ 5-hydroxymethylfurfural.

  • PDF

Bioethanol Production Based on Lignocellulosic Biomass with Pichia stipitis (Pichia stipitis를 이용한 리그노셀룰로스계 바이오매스 기반의 바이오에탄올 생산)

  • Bae, Yang-Won;Seong, Pil-Je;Cho, Dae-Haeng;Shin, Soo-Jeong;Kim, Seung-Wook;Han, Sung-Ok;Kim, Yong-Hwan;Park, Chul-Hwan
    • KSBB Journal
    • /
    • v.25 no.6
    • /
    • pp.533-538
    • /
    • 2010
  • We investigated the effect of inhibitory compounds derived lignocellulosic hydrolysates on cell growth, sugar consumption and ethanol productivity, and also we intended to identify the potential for ethanol production based on lignocellulosic hydrolysates. Cell growth and ethanol production in the presence of acetate were initiated after 12 hr. Furans showed a longer lag time and phenolics showed a significant effect on strain and ethanol production in comparison to other model compounds. In the case of lignocellulosic hydrolysates, the acetate strongly affected cell growth and ethanol production.

Effect of Different Pretreatment Methods on the Bioconversion of Rice Bran into Ethanol

  • Eyini, M.;Rajapandy, V.;Parani, K.;Lee, Min-Woong
    • Mycobiology
    • /
    • v.32 no.4
    • /
    • pp.170-172
    • /
    • 2004
  • The efficiency of acid, enzyme and microbial pretreatment of rice bran was compared based on the content of cellulose, hemicellulose, reducing sugars and xylose in the substrate. An isolate of Aspergillus niger or a strain of Trichoderma viride(MTCC 800) was employed for microbial pretreatment of rice bran in solid state. Acid pretreatment resulted in the highest amount of reducing sugars followed by enzyme and microbial pretreatment. A. niger showed a higher rate of hydrolysis than T. viride. The rice bran hydrolysate obtained from the different methods was subsequently fermented to ethanol either by Zymomonas mobilis(NCIM 806) or by Pichia stipitis(NCIM 3497). P. stipitis fermentation resulted in higher ethanol(37% higher) and biomass production($76{\sim}83%$ higher) than those of Z. mobilis. Maximum ethanol production resulted at 12h in Zymomonas fermentation, while in Pichia fermentation, it was observed at 60h. Microbial pretreatment of rice bran by A. niger followed by fermentation employing P. stipitis was more efficient but slower than the other microbial pretreatment and fermentation.

Bioethanol Production from Seaweed Undaria pinnatifida Using Various Yeasts by Separate Hydrolysis and Fermentation (SHF) (갈조류 미역(Undaria pinnatifida)의 분리당화발효와 다양한 효모를 이용한 바이오에탄올의 생산)

  • Nguyen, Trung Hau;Ra, Chae Hun;Park, Mi-Ra;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.529-534
    • /
    • 2016
  • Bioethanol was produced using the separate hydrolysis and fermentation (SHF) method with macroalgal polysaccharides from the seaweed, Undaria pinnatifida as biomass. This study focused on the pretreatment, enzymatic saccharification, and fermentation of yeasts in co-culture. Ethanol fermentation with 14.5% (w/v) seaweed hydrolysate was performed using the yeasts, Saccharomyces cerevisiae KCTC 1126 alone, Pichia angophorae KCTC 17574 alone, and their co-cultures with the yeasts either adapted to mannitol or not. Among the combinations, the co-culture of non-adapted S. cerevisiae and P. angophorae adapted to mannitol showed high bioethanol production of 12.2 g/l and an ethanol yield ($Y_{EtOH}$) of 0.41. Co-culture in the SSF process was employed in this study, to increase the ethanol yields of 35.2% and reduction of 33.3% in fermentation time. These results provide suitable information on ethanol fermentation with marine seaweeds for bioenergy production.

Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India

  • Tiwari, Snigdha;Avchar, Rameshwar;Arora, Riya;Lanjekar, Vikram;Dhakephalkar, Prashant K.;Dagar, Sumit S.;Baghela, Abhishek
    • Mycobiology
    • /
    • v.48 no.6
    • /
    • pp.501-511
    • /
    • 2020
  • Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 ℃, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.

A Study on the Conversion to Feed Stuff from Cellulosic Biomass (섬유질자원(纖維質資源)의 사료(飼料) 전환(轉換))

  • Lee, Ke-Ho;Sung, Chang-Geun;Chung, Kyu-Ok
    • Applied Biological Chemistry
    • /
    • v.27
    • /
    • pp.29-46
    • /
    • 1984
  • To utilize several species of hard wood as raw materials of feed products, fermentation characteristics of cellulosic substrates to single cell protein was investigated, and results were summarized as follows. Among the microorganisms investigated, Tricoderma viride was selected as one of the most cellulolytic. Mixed culture of fungi did not show a synergistic effect on cellulose degradation. When the fungi were cultured at $28^{\circ}C$ for 7 days in a medium containing wheat bran 25 g, cellulose 0.25 g, proteose peptone 0.025 g and tween 800.025 g, cellulotic activities on carboxy methyl cellulose and filter paper reached maximum at 12 hr. The alkali treatment resulted in increased degradation of substrate from 13 to 18% when treated with enzymes for 12h, and reducing sugar formation increased with decreased size of substrates. Glucose was a very good feedback inhibitor of the enzyme from T.viride than that of xylose. When the substrate was rehydrolyzed, hydrolysis rate was 31% to reducing sugars within 12 hr. Quantative anlysis with HPLC showed the ratio of glucose to xylose in sugar syrups as 1.77 to 1. For the purpose of producing cellulosic-single cell protein from the sawdust of mulberry tree, 15 strains of xylose-assimilating yeast were isolated from 42 samples of rotten woods and compost soils and examined for their ability to utilize xylose. Then three strains were selected by their strong xylose-assimilating activities. The cultivative condition, the growth characteristics, and protein and nucleic acid productivities of three strains were investigated. The results obtained were, 1. Wood hydrolysate of mulberry tree was assimilated by 5 strains of CHS-2, CHS-3, ST-40, CHS-12 and CHS-13. 2. The optimum initial pH and temperature for the growth of strain CHS-13 were 4.4 and $30^{\circ}C$. 3. The specific growth rate of strain CHS-13 was $0.23h^{-1}$ and generation time was 3.01 hrs at the optimum condition. 4. CHS-13 strain assimilated 81 % of sugar in wood hydrolysate. 5. CHS-13 strain was identified as Candida guilliermondii var. guilliermondii 6. When the CHS-13 strain was cultured in the wood hydrolysate containing yeast extract, L-protein content was increased with yeast extract concentration. 7. The L-protein and nucleic acid yields from wood hydrolysate were 0.73 mg/ml and $4.92{\times}10^{-2}\;mg/ml$ respectively. 8. An optimal nucleic acid content of CHS-13 strain was observed in the medium containing 0.2% of yeast extract.

  • PDF

Immobilization of Yeast Pichia stipitis for Ethanol Production (에탄올 생산을 위한 효모 Pichia stipitis의 고정화)

  • Lee, Sang-Eun;Lee, Ji-Eun;Kim, Eun-Jin;Choi, Joon-Ho;Choi, Woon-Yong;Kang, Do-Hyung;Lee, Hyeon-Yong;Jung, Kyung-Hwan
    • Journal of Life Science
    • /
    • v.22 no.4
    • /
    • pp.508-515
    • /
    • 2012
  • In this study, DEAE-cotton [derivatized by 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)] was prepared as a carrier for immobilized $Pichia$ $stipitis$ for ethanol production. When cotton was derivatized with 0.5 M DEAE HCl, the yeast cell suspension was adsorbed at 100% of the initial cell $OD_{600}$. The adsorbed yeast cells were estimated to be 101.8 mg-dry cells/g-DEAE-cotton. In particular, when a flask culture using the immobilized yeast cells was conducted in a glucose and xylose-containing medium, the yeast cells on the DEAE-cotton gradually produced ethanol, according to glucose and xylose consumption; the ethanol yield was approximately 0.33 g-ethanol/g-monosaccharide. Because DEAE-cotton was successfully used as a carrier for ethanol production from a glucose and xylose-containing medium, we expect that this bioethanol production process may be used for the bioethanol production process from the hydrolysate of lignocellulosic biomass. All the results of DEAE-cotton were compared with those of DEAE-cellulose as a carrier for immobilization.