Browse > Article
http://dx.doi.org/10.5352/JLS.2012.22.4.508

Immobilization of Yeast Pichia stipitis for Ethanol Production  

Lee, Sang-Eun (Department of Biotechnology, Chungju National University)
Lee, Ji-Eun (Department of Biotechnology, Chungju National University)
Kim, Eun-Jin (Department of Biotechnology, Chungju National University)
Choi, Joon-Ho (Department of Food Science and Biotechnology, Wonkwang University)
Choi, Woon-Yong (Division of Biomaterials Engineering, Kangwon National University)
Kang, Do-Hyung (Korea Ocean Research & Development Institute)
Lee, Hyeon-Yong (Division of Biomaterials Engineering, Kangwon National University)
Jung, Kyung-Hwan (Department of Biotechnology, Chungju National University)
Publication Information
Journal of Life Science / v.22, no.4, 2012 , pp. 508-515 More about this Journal
Abstract
In this study, DEAE-cotton [derivatized by 2-(diethylamino)ethyl chloride hydrochloride (DEAE HCl)] was prepared as a carrier for immobilized $Pichia$ $stipitis$ for ethanol production. When cotton was derivatized with 0.5 M DEAE HCl, the yeast cell suspension was adsorbed at 100% of the initial cell $OD_{600}$. The adsorbed yeast cells were estimated to be 101.8 mg-dry cells/g-DEAE-cotton. In particular, when a flask culture using the immobilized yeast cells was conducted in a glucose and xylose-containing medium, the yeast cells on the DEAE-cotton gradually produced ethanol, according to glucose and xylose consumption; the ethanol yield was approximately 0.33 g-ethanol/g-monosaccharide. Because DEAE-cotton was successfully used as a carrier for ethanol production from a glucose and xylose-containing medium, we expect that this bioethanol production process may be used for the bioethanol production process from the hydrolysate of lignocellulosic biomass. All the results of DEAE-cotton were compared with those of DEAE-cellulose as a carrier for immobilization.
Keywords
Cotton; DEAE.HCl derivatization; yeast cell immobilization; ethanol production; $Pichia$ $stipitis$;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee, C. W. and Chang, H. N. 1987. Kinetics of ethanol fermentations in membrane cell recycle fermentors. Biotechnol. Bioeng. 29, 1105-1112.   DOI   ScienceOn
2 Lee, S. E., Kim, H. J., Choi, W. Y., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2011. Optimal surface aeration rate for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum using Pichia stipitis. KSBB J. 26, 311-316.   DOI
3 Margaritis, A. and Merchant, F. J. A. 1984. Advances in ethanol production using immobilized cell systems. CRC Crit. Rev. Biotechnol. 1, 339-393.
4 Moo-Young, M., Lamptey, J. and Robinson, C. W. 1980. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 2, 541-548.   DOI   ScienceOn
5 Nagashima, M., Azuma, M., Noguchi, S., Inuzuka, K. and Samejima, H. 1984. Continuous ethanol fermentation using immobilized yeast cells. Biotechnol. Bioeng. 26, 992-997.   DOI   ScienceOn
6 Roberts, E. J. and Rowland, S. P. 1973. Removal of mercury from aqueous solutions by nitrogen-containing chemically modified cotton. Environ. Sci. Technol. 7, 552-555.   DOI   ScienceOn
7 Robyt, J. F. and Mukerjea, R. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251, 187-202.   DOI
8 Silva, D. P., Branyik, T., Dragone, G., Vicente, A. A., Teixeira, J. A. and Silva, J. B. A. e. 2008. High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chem. Pap. 62, 34-41.   DOI   ScienceOn
9 Singh, N. L., Srivastava, P. and Mishra, P. K. 2009. Studies on ethanol production using immobilized cells of Kluyveromyces thermotolerans in a packed bed reactor. J. Sci. Ind. Res. 68, 617-623.
10 Sungur, S. and Babaoğlu, S. 2005. Synthesis of a new cellulose ion exchanger and use for the separation of heavy metals in aqueous solutions. Sep. Sci. Technol. 40, 2067-2078.   DOI   ScienceOn
11 Amory, D. E. and Rouxhet, P. G. 1988. Surface properties of Saccharomyces cerevisiae and Saccharomyces carlbergensis: chemical composition, electrostatic charge and hydrophobicity. Biochim. Biophys. Acta 938, 16-70.
12 Bardi, E. P. and Koutinas, A. A. 1994. Immobilization of yeast on delignified cellulosic material for room temperature and low-temperature wine making. J. Agric. Food Chem. 42, 221-226.   DOI   ScienceOn
13 Branyik, T., Silva, D. P., Vicente, A. A., Lehnert, R., Silva, J. B. A. e, Dostálek, P. and Teixeira, J. A. 2006. Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33, 1010-1018.   DOI   ScienceOn
14 El-Hilw, Z. H. 1999. Synthesis of cotton-bearing DEAE, carbamoyethyl, carboxyethyl, and poly(acrylamide) graft for utilization in dye removal. J. Polym. Sci. 73, 1007-1014.
15 Genisheva, Z., Mussatto, S. I., Oliveira, J. M. and Teixeira, J. A. 2011. Evaluating the potential of wine-making residues and corncobs as support materials for cell immobilization for ethanol production. Ind. Crop. Prod. 34, 979-985.   DOI   ScienceOn
16 Kumar, S., Singh, S. P., Mishra, I. M. and Adhikari, D. K. 2011. Continuous ethanol production by Kluyveromyces sp. IIPE453 immobilized on bagasse chips in packed bed reactor. J. Petrol. Technol. Altern. Fuels 2, 1-6.
17 Hamaker, K., Rau, S.-L., Hendrickson, R., Liu, J., Ladisch, C. M. and Ladisch, M. R. 1999. Rolled stationary phases: Dimensionally structured textile adsorbents for rapid liquid chromatography of proteins. Ind. Eng. Chem. Res. 38, 865-872.   DOI   ScienceOn
18 Hebeish, A. and El-Hilw, Z. H. 1998. Preparation of DEAE cotton-g-poly(methacrylic acid) for use as ion exchanger. J. Polym. Sci. 67, 739-745.
19 Inloes, D. S., Taylor, D. P., Cohen, S. N., Michaels, A. S. and Robertson, C. R. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl. Environ. Microbiol. 46, 264-278.
20 Verbelen, P. J., De Schutter, D. P., Delvaux, F., Verstrepen, K. J. and Delvaux, F. R. 2006. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 28, 1515-1525.   DOI   ScienceOn
21 Wada, M., Kato, J. and Chibata, I. 1980. Continuous production of ethanol using immobilized growing yeast cells. Appl. Microbiol. Biotechnol. 10, 275-287.   DOI   ScienceOn
22 Williams, D. and Munnecke, D. M. 1981. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 23, 1813-1825.   DOI
23 Yeon, J.-H., Lee, S.-E., Choi, W. Y., Choi, W. S., Kim, I. C., Lee, H.-Y. and Jung, K.-H. 2011. Bioethanol production from the hydrolysate of rape stem in a surface-aerated fermentor. J. Microbiol. Biotechnol. 21, 109-114.   DOI
24 Yeon, J.-H., Lee, S.-E., Choi, W. Y., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2011. Repeated-batch operation of surface-aerated fermentor for bioethanol production from the hydrolysate of seaweed Sargassum sagamianum. J. Microbiol. Biotechnol. 21, 323-331.
25 Yeon, J.-H., Seo, H.-B., Oh, S. H., Choi, W. S., Kang, D. H., Lee, H.-Y. and Jung, K.-H. 2010. Bioethanol production from hydrolysate of seaweed Sargassum sagamianum. KSBB J. 25, 283-288.
26 Yu, J., Zhang, X. and Tan, T. 2007. An novel immobilization method of Saccharomyces cerevisiae to sorghum bagasse for ethanol production. J. Biotechnol. 129, 415-420.   DOI   ScienceOn