• Title/Summary/Keyword: Biomass Burning

Search Result 133, Processing Time 0.025 seconds

A Study on the Combustion Characteristics of Biomass using Cone- calorimeter (I) : the Case of Maple Leaves, Gingko Leaves, Bush, Pine Needles (콘 칼로리미터를 이용한 바이오매스의 연소특성에 관한 연구(I) - 단풍잎, 은행잎, 덤불, 솔잎에 대해서 -)

  • Park, Byung-Hyun;Park, Duck-Shin;Cho, Young-Min;Park, Eun-Young;Lee, Cheul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.21 no.4
    • /
    • pp.459-469
    • /
    • 2005
  • In recent years, concerns have been growing globally regarding greenhouse gases. Open burning of biomass causes emission of a number of greenhouse and other gases and substances. This paper studied an analysis on the characteristics of four types of biomass using duel type cone calorimeter. Cone calorimeter is widely used for assessing combustibility of materials in Europe. As a result, we evaluated several characteristics of biomass, such as heat released rate, smoke production rate, CO, $CO_2$ production and mass loss rate, and so on. $CO_2$ is currently responsible for over $60\%$ of the enhanced greenhouse effect, and may be the most important contributor to future. $CO_2$ production for biomass in the range of $1.74\~1.99kg/kg$ is similar to previous research conducted by Bhattacharya et al. (2002a).

A Study on Estimation of Air Pollutants Emission from Residential Wood Stove (주거용 화목난로의 대기오염 배출량 추정에 관한 연구)

  • Kim, Pil-Su;Jang, Young-Kee;Kim, Jeong;Shin, Yong-Il;Kim, Jeong-Soo;An, Jun-Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.276-285
    • /
    • 2010
  • Recently the Korean government has tried to cut down the $PM_{10}$ concentration by the Special Law for Air Quality Improvement. But the concentrations of $PM_{10}$ have exceeded the air quality standard at most monitoring stations. Primary $PM_{10}$ emitted from various sources and emission data have large uncertainty. The biomass burning is one of the major sources of $PM_{10}$ emission. The biomass burning is composed of wood stove usage, meat cooking and agricultural combustion etc.. Activity data and emission factors for the biomass burning are limited, and it is hard to calculate the air pollution emissions from these sources. In this study, we tried to estimate the air pollution emission from residential wood stove usage. The number of total wood stoves is estimated by the survey of wood stove manufacturer. And air pollution emission factors for the wood stove are investigated using the flue gas measurement by U.S. EPA particulate test method (Method 5G). As the results, the $PM_{10}$ and CO emission factors of wood stove are estimated as 7.7 g/kg-wood and 78.8 g/kg-wood respectively. The annual $PM_{10}$ and CO emissions from wood stove are calculated as 1,200~3,600 ton/year and 12,600~36,400 ton/year in Korea. It is confirmed that wood stove is the one of major sources of biomass burning, and the survey for activity data and the measurement for emission factors are needed for reducing the uncertainty of these emission data.

Chemical and Absorption Characteristics of Water-soluble Organic Carbon and Humic-like Substances in Size-segregated Particles from Biomass Burning Emissions

  • Yu, Jaemyeong;Yu, Geun-Hye;Park, Seungshik;Bae, Min-Suk
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.96-106
    • /
    • 2017
  • In this study, measurements of size-segregated particulate matter (PM) emitted from the combustion of rice straw, pine needles, and sesame stem were conducted in a laboratory chamber. The collected samples were used to analyze amounts of organic and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and ionic species. The light absorption properties of size-resolved water extracts were measured using ultraviolet-visible spectroscopy. A solid-phase extraction method was first used to separate the size-resolved HULIS fraction, which was then quantified by a total organic carbon analyzer. The results show that regardless of particle cut sizes, the contributions of size-resolved HULIS ($=1.94{\times}HULIS-C$) to PM size fractions ($PM_{0.32}$, $PM_{0.55}$, $PM_{1.0}$, and $PM_{1.8}$) were similar, accounting for 25.2-27.6, 15.2-22.4 and 28.2-28.7% for rice straw, pine needle, and sesame stem smoke samples, respectively. The $PM_{1.8}$ fraction revealed WSOC/OC and HULIS-C/WSOC ratios of 0.51 and 0.60, 0.44 and 0.40, and 0.50 and 0.60 for the rice straw, pine needle, and sesame stem burning emissions, respectively. Strong absorption with decreasing wavelength was found by the water extracts from size-resolved biomass burning aerosols. The absorption ${\AA}ngstr{\ddot{o}}m $ exponent values of the size-resolved water extracts fitted between 300 and 400 nm wavelengths for particle sizes of $0.32-1.0{\mu}m$ were 6.6-7.7 for the rice straw burning samples, and 7.5-8.0 for the sesame stem burning samples. The average mass absorption efficiencies of size-resolved WSOC and HULIS-C at 365 nm were 1.09 (range: 0.89-1.61) and 1.82 (range: 1.33-2.06) $m^2/g{\cdot}C$ for rice straw smoke aerosols, and 1.13 (range: 0.85-1.52) and 1.83 (range: 1.44-2.05) $m^2/g{\cdot}C$ for sesame stem smoke aerosols, respectively. The light absorption of size-resolved water extracts measured at 365 nm showed strong correlations with WSOC and HULIS-C concentrations ($R^2=0.89-0.93$), indicating significant contribution of HULIS component from biomass burning emissions to the light absorption of ambient aerosols.

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment (동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.184-196
    • /
    • 2012
  • Biomass burning activities(BBA) are caused by both natural and anthropogenic origins. Due to emissions of greenhouse gases and atmospheric aerosols during the burning process, BBA has been known to be one of important sources of atmospheric pollution and the climate change. However, the monitoring of BBA and its effects on atmospheric environment are not simple. This study evaluates the trends of BBA and its impact on atmospheric environment by using earth observing satellite. The results show that the most BBA were found over ever green, green vegetation types, and irrigated land cover types in study region. The trends of BBA and aerosol optical thickness which represents relative aerosol loading in the atmosphere, show similar pattern. Aerosol increases caused by BBA highlight the effectiveness of these mechanisms and would affect the regional atmospheric environment and climate change.

Combustion Characteristics of Coal and Wood Biomass Co-Firing on the Pulverized Coal Combustion Furnace (목질계 바이오매스와 유연탄의 혼합 연소특성에 관한 연구)

  • Kim, Sung-Chul;Lee, Hyun-Dong;Kim, Jae-Gwan
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.293-298
    • /
    • 2006
  • There are many researches in progress on co-firing of coal and biomass to reduce carbon dioxide produced from the coal consumption. This study carried out 200 Kg/h combustion test furnace by mixing coal with timber. Coal was mixed with domestic and imported-wood around 10% to 20% based on input energy. For the mixed fuel, combustion temperature, unburned carbon and the composition of flue gas were analyzed. In addition, the tendency of slagging and fouling was examined using a probe. According to the result of the experiment, combustion temperature was depended on the kind of wood and mixing ratio. The unburned carbon loss was higher with increase of wood biomass mixing ratio, as a result, the total heat loss of furnace was slightly increased. The emission of NOx and SOx were decreased by $3{\sim}20%$ and $21{\sim}60%$ respectively. There are no difference of slagging and fouling tendency between biomass co-firing and coal burning only.

  • PDF

Kraft Pulp Properties Made of Forest Bioamss from Forest Management Operation (숲가꾸기 산물에 의한 크라프트 펄프의 적성 연구)

  • Park, Hyeon-Jin;Kim, Cheol-Hwan;An, Byeong-Il;Lee, Ji-Yeong;Sheikh, MD Mominul Islam;Yeasmin, Shabina;Gwak, Hye-Jeong;Kim, Seong-Ho;Kim, Gyeong-Cheol
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.131-138
    • /
    • 2011
  • Currently, many forest residues have been generated by the National Forest Management Operation. Unfortunately, most of the forest residues are supposed to be used as raw materials for burning fuels like wood pellets. Even though the forest biomass must be effectively used for making high value-added products, they may be subject to disposable raw materials for wood pellets. Wood pellets are regarded as burning fuels with less contribution to the decrease in carbon gas emission, compared to raw materials for kraft pulps. In this study, we studied whether or not forest biomass mixed with various ages and, species could be used as raw materials for kraft pulps.

  • PDF

Source Apportionment of Fine Particle $PM_{2.5}$ in Beijing, China

  • Zhang, Yuanhang;Zhu, Xianlei;Zeng, Limin;Wang, Wei
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.216-225
    • /
    • 2003
  • Fine particles with aerodynamic diameter less than 2.5 ${\mu}m$ (PM2.5) were collected from three sites in Beijing during April, August, and November 2000 and January 2001. After chemical components in samples are analyzed, a chemical mass balance (CMB) receptor model using PARs as tracers is applied to quantify the source contributions to PM2.5 in Beijing. The results show that the major sources are coal combustion, fugitive dust, vehicle exhaust, secondary sulfate and nitrate, and organic matter while biomass burning and construction dust contribute only a small fraction. In addition, source inventory in Beijing is used to determine the primary source contributions. The two methods result in comparable results. Source apportionment at three sampling sites presents similar contributions to PM2.5 although the sites are far away from each other. However, distinct seasonal pattern is presented for the source contributions from coal combustion, fugitive dust, biomass burning, secondary sulfate and nitrate.

  • PDF