• Title/Summary/Keyword: Biological systems

검색결과 2,230건 처리시간 0.04초

Silk Spinning Apparatuses in the Cribellate Spider Nurscia albofasciata (Araneae: Titanoecidae)

  • Park, Eun-Ah;Moon, Myung-Jin
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.153-160
    • /
    • 2009
  • The fine structural characteristics of the silk spinning apparatus in the titanoecid spiders Nurscia albofasciata have been examined by the field emission scanning electron microscopy (FESEM). This titanoecid spiders have a pair of medially divided cribella just in front of the anterior spinnerets, and the surface of the cribellum is covered by hundred of tiny spigots which produce numerous cribellate silk fibrils. The cribellar silks are produced from the spigots of the sieve-like prate. and considered as a quite different sort of catching silk with dry-adhesive properties. The other types of the silk spigots were identified as follows: ampullate, pyriform and aciniform glands. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another 1-2 pairs of minor ampullate glands supply the middle spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets, and two kinds of the aciniform spigots feed silk into the middle (A type) and the posterior spinnerets (both of A & B types), respectively.

Two New Spongia species (Dictyoceratida: Spongiidae) from Korea

  • Kim, Hye-Ri;Sim, Chung-Ja
    • Animal cells and systems
    • /
    • 제13권2호
    • /
    • pp.141-145
    • /
    • 2009
  • Two new species of the family Spongiidae, Spongia (Heterofibria) cora/lina n. sp. and Spongia (Heterofibria) purpurea n. sp. are described. They were collected from Gageodo Island, Jeollanam-do, Korea. Spongia (H.) coral/ina n. sp. is closest to S. (H.) cristata Cook & Bergquist (2001) from New Zealand in skeletal features, but the new species differs from S. (H.) cristata by the arrangement of fibres and growth form. Spongia (H.) purpurea n. sp. closley resembles S. (H.) cristata, but the new species differs from New Zealand specimens by the arragement and thickness of pseudo-tertiary fibres.

생물학적 하수처리시스템에 적용된 Proportional, Integral 및 P-I 조절 시스템에 대한 비교 (Comparison of Proportional, Integral, and P-I Control Systems in Biological Wastewater Treatment Plants)

  • 김성표
    • 한국물환경학회지
    • /
    • 제21권4호
    • /
    • pp.410-415
    • /
    • 2005
  • The main purpose of this study is to evaluate the characteristics of three sets of traditional control methods (proportional, integral, and proportional - integral controls) through lab-scale biological reactor experiments. An increase in proportional gain ($K_c$) resulted in reduced dissolved oxygen (DO) offset under proportional control. An increase in integral time ($T_i$) resulted in a slower response in DO concentration with less oscillation, but took longer to get to the set point. P-I control showed more stable and efficient control of DO and airflow rates compared to either proportional control or integral control. Developed P-I control system was successfully applied to lab-scale Sequencing Batch Reactor (SBR) for treating industrial wastewater with high organic strength.

복합오염물질 처리를 위한 Hybrid PRB System

  • 김상태;강완협;문희선;민지은;조종수;박주양;김재영;박재우
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.129-132
    • /
    • 2004
  • A hybrid permeable reactive barriers(hybrid PRBs) composed of Fe(II) PRB, biological PRB and sorptive PRB was investigated to treat groundwater with multiple contaminations. We performed batch, column and pilot tests to determine removal rates and design parameters of each PRB media, and operated two hybrid PRB systems with pilot-scale barriers in series. The pilot test of the hybrid PRB system with the combination of Fe(II), biological media and black shale showed multiple contaminations could be removed in ground water. Nitrate could be treated below 20 mg/L and Cr(VI) was treated down to 0.05 mg/L. TCE was degraded below 0.001 mg/L in system. The hybrid PRB system with a proper combination of PRBs could remediate ground water with multiple contaminations.

  • PDF

경혈의 밀리파 자극과 그 영향에 관한 연구 (A Study on the millimeter-wave stimulation on acupuncture points and it′s biological effects)

  • 변미경;한상휘;김정국;허웅;박영배
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(5)
    • /
    • pp.129-132
    • /
    • 2002
  • In this paper, we describe a millimeter-wave radiation system developed for stimulating acupuncture points, and an analyzing system developed for monitoring the change of physiological signals after the stimulation such as ECG, skin temperature, skin potential and skin resistance. The systems are to be used to investigate the treatment efficacy and biological effects of the millimeter-wave, and eventually, can be used to study the acupuncture meridian system theory in the traditional Korean medicine.

  • PDF

상태변수 표현을 가진 동적 신경망을 이용한 비선형 시스템의 식별과 제어 (Identification and Control of Nonlinear System Using Dynamic Neural Model with State Parameter Representation)

  • 박성욱;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.157-160
    • /
    • 1995
  • Neural networks potentially offer a general framework for modeling and control of nonlinear systems. The conventional neural network models are a parody of biological neural structures, and have very slow learning. In order to emulate some, dynamic functions, such as learning and adaption, and to better reflect the dynamics of biological neurons, M.M.Gupta and D.H.Rao have developed a 'dynamic neural model'(DNU). Proposed neural unit model is to introduce some dynamics to the neuron transfer function, such that the neuron activity depends on internal states. Numerical examples are presented for a model system. Those case studies showed that the proposed DNU is so useful in practical sense.

  • PDF

생체영상과 미세가공을 이용한 면역 시스템 연구 (Studying immune system using imaging and microfabrication)

  • 도준상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1446-1449
    • /
    • 2008
  • Immune system is composed of multiple cells with distinct functions, and immune responses are orchestrated by complex and dynamic cell-cell interactions. Therefore, each cell behavior and function should be understood under right spatio-temporal context. Studying such complexity and dynamics has been challenging with conventional biological tools. Recent development of new technologies such as state of art imaging instruments and microfabrication techniques compatible with biological systems have provided many exciting opportunities to dissect complex and dynamic immune cell interactions; new microscopy techniques enable us to observe stunning dynamics of immune system in real time. Microfabrication permits us to manipulate microenvironments governing molecular/cellular dynamics of immune cells to study detailed mechanisms of phenomena observed by microscopy. Also, microfabrication can be used to engineer microenvironments optimal for specific imaging techniques. In this presentation, I am going to present an example of how these two techniques can be combined to tackle challenging problems in immunology. Obviously, this strategy can readily be applied to many different fields of biology other than immunology.

  • PDF

시계열 예측을 위한 DNA 코딩 방법 (DNA Coding Method for Time Series Prediction)

  • 이기열;선상준;이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.280-280
    • /
    • 2000
  • In this paper, we propose a method of constructing equation using bio-inspired emergent and evolutionary concepts. This method is algorithm that is based on the characteristics of the biological DNA and growth of plants. Here is. we propose a constructing method to make a DNA coding method for production rule of L-system. L-system is based on so-called the parallel rewriting mechanism. The DNA coding method has no limitation in expressing the production rule of L-system. Evolutionary algorithms motivated by Darwinian natural selection are population based searching methods and the high performance of which is highly dependent on the representation of solution space. In order to verify the effectiveness of our scheme, we apply it to one step ahead prediction of Mackey-Glass time series.

  • PDF

식물의 생장 및 발달과정에서 Glycogen synthase kinase 3 (GSK3) 유전자의 역할 (The functional roles of plant glycogen synthase kinase 3 (GSK3) in plant growth and development)

  • 류호진
    • Journal of Plant Biotechnology
    • /
    • 제42권1호
    • /
    • pp.1-5
    • /
    • 2015
  • The biological roles of glycogen synthase kinase 3 (GSK3) proteins have long been extensively explored in eukaryotic organisms including fungi, animals and plants. This gene family has evolutionary well conserved kinase domain and shares similar phosphorylation properties to their substrate proteins. However, their specific biological roles are surprisingly distinct in different organisms. GSK3s play key role in key regulating the cytoskeleton and metabolic processes in animal systems, but plant GSKs are involved in quite different processes, such as flower development, brassinosteroid signaling, abiotic stresses, and organogenesis. In particular, recent studies have reported the critical multiple functions of BIN2 and its related paralogues plant GSK3s during organogenesis via connecting hormonal or developmental programs. In this review, we outline the recent understanding in the versatile functions related in physiological and biochemical relevance, which are mediated by plant GSK3s in various cellular signaling.

식물의 생물학적 시스템에 대한 방사선의 상호작용 (Effect of Irradiation on the Biological System in Plants)

  • 최종일;김진규
    • Journal of Plant Biotechnology
    • /
    • 제40권3호
    • /
    • pp.111-124
    • /
    • 2013
  • Research on the basic interaction of radiation with biological systems has contributed to human society through various applications in pharmaceutical, medicine, agriculture and other technological developments. In the agricultural sciences and food technology sectors, the last few decades have witnessed a large number of pertinent works regarding the utilization of radiation for evolution of superior varieties of agricultural crops of economic importance. This review presents general information about the effect of radiation on plant specificity, dose response, and benefits. There has been summarized of the effects observed after exposure and influenced by several factors including plant characteristics and radiation features. We also report on the effect of ${\gamma}$-irradiations on plants, focusing on metabolic alterations, modifications of growth and development and changes in biochemical pathways.