Browse > Article

Silk Spinning Apparatuses in the Cribellate Spider Nurscia albofasciata (Araneae: Titanoecidae)  

Park, Eun-Ah (Department of Biological Sciences & Institute of Basic Sciences. Dankook University)
Moon, Myung-Jin (Department of Biological Sciences & Institute of Basic Sciences. Dankook University)
Publication Information
Animal cells and systems / v.13, no.2, 2009 , pp. 153-160 More about this Journal
Abstract
The fine structural characteristics of the silk spinning apparatus in the titanoecid spiders Nurscia albofasciata have been examined by the field emission scanning electron microscopy (FESEM). This titanoecid spiders have a pair of medially divided cribella just in front of the anterior spinnerets, and the surface of the cribellum is covered by hundred of tiny spigots which produce numerous cribellate silk fibrils. The cribellar silks are produced from the spigots of the sieve-like prate. and considered as a quite different sort of catching silk with dry-adhesive properties. The other types of the silk spigots were identified as follows: ampullate, pyriform and aciniform glands. Two pairs of major ampullate glands send secretory ductules to the anterior spinnerets, and another 1-2 pairs of minor ampullate glands supply the middle spinnerets. In addition, the pyriform glands send ductules to the anterior spinnerets, and two kinds of the aciniform spigots feed silk into the middle (A type) and the posterior spinnerets (both of A & B types), respectively.
Keywords
cribellum; fine structure; silk; spider; Nurscia albofasciata;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Eberhard WG (1986) Effects of orb-web geometry on prey interception and retention. In: Shear WA (ed), Spiders: Webs, Behavior, and Evolution. Stanford University Press, pp 70-100
2 Griswold CW, Coddington JA, Platnick NI, and Forster RR (1999) Towards a phylogeny of entelegyne spiders (Araneae, Araneomorphae, Entelegynae). J Arachnol 27: 53-63
3 Hawthorn AC and Opell BD (2002) Evolution of adhesive mechanisms in cribellar spider prey capture thread: evidence for van der Waals and hygroscopic forces. Biol J Linnean Soc 77: 1-8   DOI   ScienceOn
4 Kovoor J (1972) Etude histochimique et cytologique des glandes sericigenes de quelques Argiopidae. Ann Sci Nat Zool Biol Anim 14: 1-40
5 Moon MJ and An JS (2005) Spinneret microstructure of silk spinning apparatus in the crab spider, Misumenops tricuspidatus (Araneae: Thomisidae). Entomol Res 35: 67-74   DOI   ScienceOn
6 Opell BD (1989) Functional associations between the cribellum spinning plate and prey capture threads of Miagrammopes animotus (Araneida: Uloboridae). Zoomorphology 108: 263-267   DOI
7 Tillinghast EK and Christenson T (1984) Observations on the chemical composition of the web of Nephila clavipes (Araneae: Araneidae). J Arachnol 12: 69-74
8 Eberhard WG and Pereira F (1993) Ultrastructure of cribellate silk of nine species in eight families and possible taxonomic implications (Araneae: Amaurobiidae, Deinopidae, Desidae, Dictynidae, Filistatidae, Hypochilidae, Stiphidiidae, Tengellidae). J Arachnol 21: 161-174
9 Moon MJ (1998) Fine structural analysis of the silk producing apparatus in wolf spider, Pardosa astrigera (Araneae: Lycosidae). Kor J Entomol 28: 201-211
10 Peters HM and Kovoor J (1991) The silk-producing system of Linyphia triangularis (Araneae: Linyphiidae) and some comparisons with Araneidae: Structure, histochemistry and function. Zoo morphology 111: 1-17
11 Moon MJ and An JS (2006) Microstructure of silk spigot of the green crab spider, Oxytate striatipes (Araneae: Thomisidae). Entomol Res 36: 133-138   DOI   ScienceOn
12 Kamovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27: 137A
13 Coddington JA and Levi HW (1991) Systematics and evolution of spiders (Araneae). Ann Rev Ecol Syst 22: 565-592   DOI   ScienceOn
14 Lehtinen PT (1967) Classification of the cribellate spiders and some allied families, with notes on the evolution of the suborder Araneomorpha. Ann Zool Fennici 4: 199-468
15 Kovoor J (1984) Anatomie, histologie et affinites de l'appareil sericigene des Hersilia Sav. & Aud. (Araneae: Hersiliidae). Can J Zool 62: 97-106   DOI
16 Peters HM (1987) Fine structure and function of capture threads. In: Nentwig W (ed), Ecophysiology of Spiders, Springer-Verlag, Berlin, pp 187-202
17 Moon MJ and Kim TH (2005) Microstructural analysis of the capture thread spinning apparatus in orb web spiders. Entomol Res 35: 133-140   DOI   ScienceOn
18 Coddington J (1986) The monophyletic origin ofthe orb web. In: Shear WA (ed), Spiders: Webs, Behavior, and Evolution, Stanford University Press, Stanford, pp 319-363
19 Opell BD (1999) Changes in spinning anatomy and thread stickiness associated with the origin of orb-weaving spiders. BioI J Linnean Soc 68: 593-612   DOI   ScienceOn
20 Moon MJ (2006) Microstructure of the silk spinning nozzles in the lynx spider, Oxyopes licenti (Araneae: Oxyopidae). Integrative Biosciences 10: 85-91   과학기술학회마을   DOI
21 Moon MJ and Park JG (2008) Spinning apparatus for the dragline silk in the funnel-web spider Agelena limbata (Araneae: Agelenidae). Animal Cells & Systems 12: 109-116   DOI
22 Foelix RF (1996) Biology of Spiders. 2nd Ed. Oxford University Press, London
23 Namkung J (2001) The Species of Korean Spiders. Kyohak Publ Co Ltd, Seoul
24 Tillinghast EK and Townley MA (1987) Chemistry, physical properties, and synthesis of Araneidae orb webs. In: Nentwig W (ed), Ecophysiology of Spiders, Springer-Verlag, Berlin, pp 203-210
25 Moon MJ and Tillinghast EK (2004) Silk production after mechanical pulling stimulation in the ampullate silk glands of the bam spider, Araneus cavaticus. Entomol Res 34: 123-130   DOI   ScienceOn
26 Kovoor J (1987) Comparative structure and histochemistry of silkproducing organs in Arachnids. In: Nentwig W (ed), Ecophysiology of Spiders, Springer-Verlag, Berlin, pp 159-186
27 Groome JR, Townley MA, de Tschaschell M, and Tillinghast EK (1991) Detection and isolation of proctolin-like immunoreactivity in Arachnids: Possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37: 9-19   DOI   ScienceOn
28 Mullen GR (1969) Morphology and histology ofthe silk glands in Araneus sericatus Cl. Trans Am Microsc Soc 88: 232-240   DOI   ScienceOn
29 OpeII BD (2002) How spider anatomy and thread configuration shape the stickiness of cribellar prey capture threads. J Arachnol 30: 10-19   DOI   ScienceOn
30 Nentwig W and Heimer S (1987) Ecological aspects of spider webs. In: Nentwig W (ed), Ecophysiology of Spiders, Springer-Verlag, Berlin, pp 211-225
31 Shear WA (1994) Untangling the evolution of the web. Amer Sci 82: 256-266
32 Moon MJ (2008) Fine structure of the silk spigots in the spider Dolomedes sulfureus (Araneae: Pisauridae). Kor J Microsc 38: 89-96
33 OpeII BD (1995) Ontogenetic changes in cribellum spigot number and cribellar prey capture thread stickiness in the spider family Uloboridae. J Morphol 224: 47-565   DOI   ScienceOn