• Title/Summary/Keyword: Biological systems

Search Result 2,229, Processing Time 0.025 seconds

Identification of a PAS Domain-containing Protein in a Mammalian Hibernator, Murina leucogaster

  • Cho, Sang-Gil;Kim, Dong-Yong;Eom, Ki-Hyuk;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.119-125
    • /
    • 2009
  • Mammalian hibernation is a type of natural adaptation that allows organisms to avoid harsh environment and to increase the possibility of survival. To investigate the molecular link between circadian and hibernating rhythms in the greater tube-nosed bats, Murina leucogaster, we set out to identify circadian genes that are expressed in bats, with specific focus on the PAS domain by using PCR-based screens. We could isolate a eDNA clone, designated as LPAS1, that encodes a protein of 521 amino acid residues. LPAS1 is closely related with CLOCK family with the highest homology to human CLOCK. Based on RT-PCR analyses, LPAS1 transcripts are ubiquitously present in tissues from both summer active and winter dormant periods. Given that LPAS1 is a member of the bHLH-PAS protein superfamily but lacks polyglutamine transactivation domains, it is likely to function as a repressor for endogenous CLOCK to hinder its roles in promoting transcription. Our result will open a new avenue to further examine the functional interconnection between the circadian clock and the circannual clock such as mammalian hibernation.

A New Perspective on the Heterogeneity of Cancer Glycolysis

  • Neugent, Michael L.;Goodwin, Justin;Sankaranarayanan, Ishwarya;Yetkin, Celal Emre;Hsieh, Meng-Hsiung;Kim, Jung-whan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.1
    • /
    • pp.10-18
    • /
    • 2018
  • Tumors are dynamic metabolic systems which highly augmented metabolic fluxes and nutrient needs to support cellular proliferation and physiological function. For many years, a central hallmark of tumor metabolism has emphasized a uniformly elevated aerobic glycolysis as a critical feature of tumorigenecity. This led to extensive efforts of targeting glycolysis in human cancers. However, clinical attempts to target glycolysis and glucose metabolism have proven to be challenging. Recent advancements revealing a high degree of metabolic heterogeneity and plasticity embedded among various human cancers may paint a new picture of metabolic targeting for cancer therapies with a renewed interest in glucose metabolism. In this review, we will discuss diverse oncogenic and molecular alterations that drive distinct and heterogeneous glucose metabolism in cancers. We will also discuss a new perspective on how aberrantly altered glycolysis in response to oncogenic signaling is further influenced and remodeled by dynamic metabolic interaction with surrounding tumor-associated stromal cells.

Recent advances in intravital microscopy for investigation of dynamic cellular behavior in vivo

  • Choo, Yeon Woong;Jeong, Juhee;Jung, Keehoon
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.357-366
    • /
    • 2020
  • Currently, most biological research relies on conventional experimental techniques that allow only static analyses at certain time points in vitro or ex vivo. However, if one could visualize cellular dynamics in living organisms, that would provide a unique opportunity to study key biological phenomena in vivo. Intravital microscopy (IVM) encompasses diverse optical systems for direct viewing of objects, including biological structures and individual cells in live animals. With the current development of devices and techniques, IVM addresses important questions in various fields of biological and biomedical sciences. In this mini-review, we provide a general introduction to IVM and examples of recent applications in the field of immunology, oncology, and vascular biology. We also introduce an advanced type of IVM, dubbed real-time IVM, equipped with video-rate resonant scanning. Since the realt-ime IVM can render cellular dynamics with high temporal resolution in vivo, it allows visualization and analysis of rapid biological processes.

Identification and Phylogenetic Analysis of SINE-R Retroposon Family in cDNA Library of Human Fetal Brain

  • Yi, Joo-Mi;Shin, Kyung-Mi;Lee, Ji-Won;Paik, In-Ho;Jang, Kyung-Lib;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.231-236
    • /
    • 2001
  • SINE-R retroposons have been derived from human endogenous retrovirus HERV-K family and found to be hominoid specific. Both SINE-R retroposons and HERV-K family are potentially capable of affecting the expression of closely located genes. From cDNA library of human fetal brain, we identified seven SINE-R retroposons and compared them with sequences derived from GenBank database. The SINE-R retroposons from human feta1 brain showed 85∼97% sequence similarities with the human-specific retroposon SINE-R.C2. They also showed 88∼96% sequence similarities with the sequence of the schizo-cDNA clone that derived from postmortem frontal cortex tissue of a schizophrenic patient. Phylogenetic analysis using the neiqhbor-joining method revealed that the seven new SINE-R retroposons from cDNA library of the human feta1 brain have proliferated independently during human evolution. The data indicate that such SINE-R retroposons are expressed in human fetal brain and deserve further investigation as potential leads to understanding of neuropsychiatric diseases.

  • PDF

Assicuation between Genetic Variation of the Insulin Receptor Gene and Essential Hypertension in the Korean Population

  • Kang, Byung-Yong;Kim, Ki-Tae;Eo, Hyun-Seon;Lee, Kyung-Ho;Hong, Sung-Soo;Shin, Jung-Hee;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.87-90
    • /
    • 2000
  • Essential hypertension is a multifactorial disease, and has been shown to be associated with insulin resistance. The relationship between the genetic variation of the insulin receptor (INSR) gene and essential hypertension In Korean population was investigated by the Nsi 1 restriction fragment length polymorphism (RFLP) pattern of this gene. The observed genotype frequencies of INSR gene were not deviated from those expected for the Hardy-Weinberg equilibrium (HWE), but a significant association was observed between essential hypertension and N1 allele of Nsi 1 RFLP at the INSR gene ($X^2$-test; P<0.05). Moreover, the frequency of N1 allele was significantly different between normotensives and essential hypertensives in subgroups that were not obese ($X^2$-test; P<0.05). These data suggest that the Nsil RFLP of INSR gene may be a useful genetic marker for essential hypertension in Korean population.

  • PDF

A Study on the Realities and Preventive Countermeasures of Child Abuse Committed by Biological Parents by information analysis.

  • Ryu, Chae-Hyoung;Yoon, Hyun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.5
    • /
    • pp.171-177
    • /
    • 2019
  • In this paper, we analyze the current phenomenon of child abuse crimes based on the information gathered by the National Child Protection Agency. The purpose of this paper is to diagnose the seriousness of child abuse by biological parents based on the analyzed information and propose measures against it. Comprehensive and integrated measures are needed for child abuse committed by biological parents due to abuse concealment, continuity of damage, and inactive national intervention by considering punishment on attackers through national intervention, fundamental in-depth psychological counseling, therapeutic care, promoting recovery of victims, and ultimately continuous and regular management and monitoring as a long-terms measure. To do so, developing customized and individual educational programs and make them obligations can be first presented to identify child abuse in advance and build up preventive systems based on the principle of family preservation. In addition, problems should be addressed at a fundamental level by performing various and active therapeutic treatments such as psychological treatment, mental treatment, or drug treatment gradually and through phases for biological parents who commit child abuse and contributing to recovering the relationship. Furthermore, proper protection and treatment service should be provided to children victimized by abuse by extending professional children care facilities and adopting the professional family commission system as measures by separating family.

Affordable method of video recording for ecologists and citizen-science participants

  • Yang, Eunjeong;Lee, Keesan;Ha, Jung-moon;Kim, Woojoo;Song, Ho-Kyung;Hwang, Injae;Lee, Sang-im;Jablonski, Piotr G.
    • Journal of Ecology and Environment
    • /
    • v.42 no.2
    • /
    • pp.85-89
    • /
    • 2018
  • Observations and video documentation of interactions between animals living in dens, cavities, and other enclosed spaces are difficult, but they play an important role in field biology, ecology, and conservation. For example, bird parents visiting nests and feeding their nestlings may provide crucial information for testing of ecological hypotheses and may easily attract attention of participants of citizen-science ecological and conservation projects. Because of the nest concealment of cavity-nesting birds, their behaviors in the nest can only be studied by using video surveillance. Professional wildlife surveillance systems are extremely expensive. Here, we describe an inexpensive video setup that can be constructed with relatively little effort and is more affordable than any previously described system. We anticipate that the relatively low cost of about 250 USD for a battery-operated system is an important feature for citizen-science type of projects and for applications in heavily populated areas where the potential for theft and vandalism may be high. Based on our experiences, we provide methodological advice on practical aspects of using this system in the field for ecological research on birds. We highlight the low cost, easiness of construction, and potential availability to a large number of observers taking part in wildlife monitoring projects, and we offer technical help to participants of such research projects.

Identification and Phylogenetic Analysis of the Human Endogenous Retrovirus HERV-W LTR Family in Placenta cDNA Library

  • Yi, Joo-Mi;Lee, Ji-Won;Shin, Kyung-Mi;Huh, Jae-Won;Lee, Won-Ho;Jang, Kyung-Lib;Kim, Heui-Soo
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.243-246
    • /
    • 2001
  • Human endoqenous retroviral long terminal repeats (LTRs) have been found to be coexpressed with sequences of genes closely located nearby. It has been suggested that the LTR elements have contributed to structural changes or genetic variations of human genome connected to various diseases and evolution. Using cDNA library derived from placenta tissue, we performed PCR amplification and identified five new HERV-W LTR elements. Those LTR elements showed a high degree of sequence similarity (98-99%) with HERV-W LTR (AF072500). A phylogenetic tree obtained by the neighbor-joining method revealed that HERV-W LTR elements could be mainly divided into two groups through evolutionary divergence. Five new HERV-W LTR elements (pla-1, 4, 5, 6, 7) belonged to the group I with AX000960, AF072504, and AF072506 from GenBank database. The data suggest that several copy numbers of the HERV-W LTR elements are transcribed in placenta and may contribute to the understanding of biological function such as human placental morphogenesis.

  • PDF

Introduction of the Korea BioData Station (K-BDS) for sharing biological data

  • Byungwook Lee;Seungwoo Hwang;Pan-Gyu Kim;Gunwhan Ko;Kiwon Jang;Sangok Kim;Jong-Hwan Kim;Jongbum Jeon;Hyerin Kim;Jaeeun Jung;Byoung-Ha Yoon;Iksu Byeon;Insu Jang;Wangho Song;Jinhyuk Choi;Seon-Young Kim
    • Genomics & Informatics
    • /
    • v.21 no.1
    • /
    • pp.12.1-12.8
    • /
    • 2023
  • A wave of new technologies has created opportunities for the cost-effective generation of high-throughput profiles of biological systems, foreshadowing a "data-driven science" era. The large variety of data available from biological research is also a rich resource that can be used for innovative endeavors. However, we are facing considerable challenges in big data deposition, integration, and translation due to the complexity of biological data and its production at unprecedented exponential rates. To address these problems, in 2020, the Korean government officially announced a national strategy to collect and manage the biological data produced through national R&D fund allocations and provide the collected data to researchers. To this end, the Korea Bioinformation Center (KOBIC) developed a new biological data repository, the Korea BioData Station (K-BDS), for sharing data from individual researchers and research programs to create a data-driven biological study environment. The K-BDS is dedicated to providing free open access to a suite of featured data resources in support of worldwide activities in both academia and industry.

Highly Sensitive Biological Analysis Using Optical Microfluidic Sensor

  • Lee, Sang-Yeop;Chen, Ling-Xin;Choo, Jae-Bum;Lee, Eun-Kyu;Lee, Sang-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.130-142
    • /
    • 2006
  • Lab-on-a-chip technology is attracting great interest because the miniaturization of reaction systems offers practical advantages over classical bench-top chemical systems. Rapid mixing of the fluids flowing through a microchannel is very important for various applications of microfluidic systems. In addition, highly sensitive on-chip detection techniques are essential for the in situ monitoring of chemical reactions because the detection volume in a channel is extremely small. Recently, a confocal surface enhanced Raman spectroscopic (SERS) technique, for the highly sensitive biological analysis in a microfluidic sensor, has been developed in our research group. Here, a highly precise quantitative measurement can be obtained if continuous flow and homogeneous mixing condition between analytes and silver nano-colloids are maintained. Recently, we also reported a new analytical method of DNA hybridization involving a PDMS microfluidic sensor using fluorescence energy transfer (FRET). This method overcomes many of the drawbacks of microarray chips, such as long hybridization times and inconvenient immobilization procedures. In this paper, our recent applications of the confocal Raman/fluorescence microscopic technology to a highly sensitive lab-on-a-chip detection will be reviewed.