• Title/Summary/Keyword: Biological remediation

Search Result 108, Processing Time 0.035 seconds

Evaluating Heavy Metal Stabilization Efficiency of Chemical Amendment in Agricultural Field: Field Experiment (안정화제 처리에 따른 중금속 오염 농경지 복원의 효율성 평가: 현장실증시험)

  • Oh, Se-Jin;Kim, Sung-Chul;Yoon, Hyun-Soo;Kim, Ha-Na;Kim, Tae-Hwan;Yeon, Kyu-Hun;Lee, Jin-Soo;Hong, Sung-Jo;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1052-1062
    • /
    • 2011
  • Residual of heavy metals originated from abandoned metal mines in agricultural field can cause adverse effect on ecosystem and eventually on human health. For this reason, remediation of heavy metal contaminated agriculture field is a critical issue. In this study, five different amendments, agriculture lime, dolomite, steel slag, zeolite, and compost, were evaluated for stabilization efficiency of heavy metals in agricultural field. Applied mixing ratio of amendments was varied (2% or 6%) depending on properties of amendments. Result showed that soil pH was increased compared to control (6.1-6.7) after mixing with amendments and ordered as dolomite (7.2~8.3) > steel slag (6.7~8.1) > agriculture lime (6.6~7.4) > zeolite (6.2~6.9) > compost (6.1~7.1). Among other amendments, agriculture lime, steel slag, and dolomite showed the highest stabilization efficiency of heavy metals in soil. For Cd, stabilization efficiency was 49~72%, 51~83%, and 0~36% for agriculture lime, steel slag, and dolomite respectively. In case of Pb, 43~64, 37~73%, and 51~73% of stabilization efficiency was observed for agriculture lime, steel slag, and dolomite respectively. However, minimal effect of heavy metal stabilization was observed for zeolite and compost. Based on result of this study, amendments that can increase the soil pH were the most efficient to stabilize heavy metal residuals and can be adapted for remediation purpose in agricultural field.

Psychosocial Rehabilitation of Chronic Depression (우울증 환자를 위한 정신사회 재활치료)

  • Hwang, Tae-Yeon
    • Korean Journal of Biological Psychiatry
    • /
    • v.6 no.1
    • /
    • pp.30-33
    • /
    • 1999
  • While depression is certainly a prevalent disorder, it is often severe and debilitating and does not always have the good prognosis we have been led to expect. Social approaches to affective disorders have not been subjected to the same level of scrutiny as the interventions used in the management of schizophrenia. Psychosocial Rehabilitation is now at a critical stage. Psychoeducation, social skill training, cognitive remediation, family education, vocational rehabilitation and case management programs are essential for the rehabilitation of chronic depression.

  • PDF

A Study on The Assessment of Treatment Technologies for Efficient Remediation of Radioactively-Contaminated Soil (방사성 오염 토양의 효율적 복원을 위한 처리기술 평가 연구)

  • Song, Jong Soon;Shin, Seung Su;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Soil can be contaminated by radioactive materials due to nuclide leakage following unexpected situations during the decommissioning of a nuclear power plant. Soil decontamination is necessary if contaminated land is to be reused for housing or industry. The present study classifies various soil remediation technologies into biological, physics/chemical and thermal treatment and analyzes their principles and treatment materials. Among these methods, this study selects technologies and categorizes the economics, applicability and technical characteristics of each technology into three levels of high, medium and low by weighting the various factors. Based on this analysis, the most applicable soil decontamination technology was identified.

A Study on Biological Wastewater Treatment using the Combination of Anaerobic and Two Intermittent Aeration Tanks Operated Alternately: A Pilot-scale Study (혐기 및 2단 교호(交互) 간헐포기조를 이용한 하수고도처리에 관한 연구: 파일럿 규모의 실험결과를 중심으로)

  • Choi, Yong-Su;Hong, Seok-Won;Kwon, Gihan
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.269-274
    • /
    • 2004
  • The performance of a newly designed wastewater treatment process equipped with an anaerobic and two intermittent aeration tanks operated alternately was investigated. During the experimental period, several types of cyclic operating schedules with different aeration and non aeration time were examined for the optimization. At all modes, the removals of organic matter and SS were highly achieved. With respect to T-N removal, however, the cycle length for aeration on/off affected the efficiencies. At the optimal operating mode, the ORP bending point indicating the disappearance of nitrate was observed. Considering the influent wastewater characteristics and cyclic operating schedules, it can be suggested that T-P removal is much more BOD/T-P ratio and/or its load dependant rather than the aeration on/off time. The results obtained from pilot-scale test showed the competitive advantage of this alternating process through an omission of nitrate recycle and operational flexibility against influent load variations when comparing with other continuous flow processes.

Recent Development of Removal and Treatment of Toxic Heavy Metals by Microorganisms (유독 중금속 오염물질 처리를 위한 미생물균주의 최근 이용 및 개발)

  • 방상원;최영길;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.19 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • There are several ways to remove and treat toxic heavy metals in the environment: chemical, physical and biological ways. The biological treatment utilizes the natural reactions of microorganisms living in the environments. These reactions include biosorption and bioaccumulation, oxidation and reduction, methylation and demethylation, metal - organic complexation and insoluble complex formation. The biological reactions provide a crucial key technology in the remediation of heavy metal-contaminated soils and waters. According to recent reports, various kinds of heavy metal species were removed by microorganisms and the new approaches and removal conditions to remediate the metals were also tried and reported elsewhere. This was mostly carried out by microorganisms such as fungi, bacteria and alga. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment.

  • PDF

Development of Bioreactors for Enrichment of Chemolithotrophic Methanogen and Methane Production (독립영양형 메탄생산세균의 농화 및 메탄생산 반응기의 개발)

  • Na, Byung-Kwan;Hwang, Tae-Sik;Lee, Sung-Hun;Ju, Dong-Hun;Sang, Byung-In;Park, Doo-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • A gas-circulating bioreactor was used for enrichment of autotrophic methanogens. Mixture of hydrogen and carbon dioxide (5:1) was used as a sole energy and carbon source. Anaerobic digestive sludge isolated from wastewater treatment system was inoculated into the gas-circulating bioreactor. The enrichment of two chemolithotrophic methanogens, Methanobacterium curvum and Methanobacterium oryzae was accomplished in the gas-circulating bioreactor. The enriched bacteria were cultivated in a bioreactor equipped with hollow-fiber hydrogen-supplying system (hollow-fiber bioreactor), and a hybrid-type bioreactor equipped with hollow-fiber hydrogen-supplying system and electrochemical redox control system. The methane productivity was maximally 30% (V/V) in the hollow-fiber bioreactors and 50% (V/V) in the hybrid-type bioreactor.

Design Scheme to Develop Integrated Remediation Technology: Case Study of Integration of Soil Flushing and Pneumatic Fracturing for Metal Contaminated Soil (복합복원기술 개발을 위한 설계안 : 중금속 오염토양을 위한 토양세척과 토양파쇄의 통합 사례 연구)

  • Chung, Doug-Young;Yang, Jae-E.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.1
    • /
    • pp.29-37
    • /
    • 2006
  • In remediation of the contaminated soil, it requires to select at least more than two remediation technologies depending on the fate and transport phenomena through complicated reactions in soil matrix. Therefore, methodologies related to develop the integrated remediation technology were reviewed for agricultural soils contaminated with heavy metals. Pneumatic fracturing is necessary to implement deficiency because soil washing is not effective to remove heavy metals in the subsurface soil. But it needs to evaluate the characteristics such as essential data and factors of designated technology in order to effectively apply them in the site. In the remediation site, the important soil physical and chemical factors to be considered are hydrology, porosity, soil texture and structure, types and concentrations of the contaminants, and fate and its transport properties. However, the integrated technology can be restrictive by advective flux in the area which remediation is highly effective although both soil washing and pneumatic fracturing were applied simultaneously in the site. Therefore, we need to understand flow pathways of the target contaminants in the subsurface soils, that includes kinetic desorption and flux, predictive simulation modeling, and complicated reaction in heterogenous soil.

Biomineralization of Calcium Carbonate Polymorphs by the Bacterial Strains Isolated from Calcareous Sites

  • Dhami, Navdeep Kaur;Reddy, M. Sudhakara;Mukherjee, Abhijit
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.5
    • /
    • pp.707-714
    • /
    • 2013
  • Microbially induced calcium carbonate precipitation (MICCP) is a naturally occurring biological process that has various applications in remediation and restoration of a range of building materials. In the present investigation, five ureolytic bacterial isolates capable of inducing calcium carbonate precipitation were isolated from calcareous soils on the basis of production of urease, carbonic anhydrase, extrapolymeric substances, and biofilm. Bacterial isolates were identified as Bacillus megaterium, B. cereus, B. thuringiensis, B. subtilis, and Lysinibacillus fusiformis based on 16S rRNA analysis. The calcium carbonate polymorphs produced by various bacterial isolates were analyzed by scanning electron microscopy, confocal laser scanning microscopy, X ray diffraction, and Fourier transmission infra red spectroscopy. A strain-specific precipitation of calcium carbonate forms was observed from different bacterial isolates. Based on the type of polymorph precipitated, the technology of MICCP can be applied for remediation of various building materials.

Biological Fixation of $CO_2$ by Chlorella sp. HA-1 in a Semi-Continuous and Series Reactor System

  • LEE JAE-YOUNG;KWON TAE-SOON;BAEK KITAE;YANG JI-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.461-465
    • /
    • 2005
  • Characteristics of biological $CO_2$ fixation by Chlorella sp. HA-1 were investigated in a semi-continuous and series reactor system using an internally illuminated photobioreactor to overcome shortcomings of physicochemical technologies such as adsorption and membrane separation. High $CO_2$ fixation rate was achieved in the semi-continuous reactor system, in which the dilution ratios of the culture medium were controlled. The average $CO_2$ fixation rate was maintained almost constantly when the dilution ratio increased by 0.1 increment from the initial value of 0.5. The total removal efficiency of $CO_2$ was enhanced by employing a series reactor system. The average $CO_2$ fixation rate increased until 4.013 g $CO_2\;day^{-1}$ in a series operation of four reactors, compared to 0.986 g $CO_2\;day^{-1}$ in a batch operation mode. The total $CO_2$ fixation rate was proportional to the number of reactors used in the series reactor system. In the series reactor system of semi-continuous operation, a large amount of $CO_2$ was removed continuously for 30 days. These results showed that the present reactor systems are efficient and economically feasible for a biological $CO_2$ fixation.

Electrochemical Regeneration of FAD by Catalytic Electrode Without Electron Mediator and Biochemical Reducing Power

  • JEON SUNG JIN;SHIN IN HO;SANG BYUNG IN;PARK DOO HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.281-286
    • /
    • 2005
  • We created a new graphite-Cu(II) electrode and found that the electrode could catalyze FADH$_2$ oxidation and FAD reduction coupled to electricity production and consumption, respectively. In a fuel cell with graphite-Cu(II) anode and graphite-Fe(III) cathode, the electricity was produced by coupling to the spontaneous oxidation of FADH$_2$ Fumarate and xylose were not produced from the enzymatic oxidation of succinate and xylitol without FAD, respectively, but produced with FAD. The production of fumarate and xylose in the reactor with FAD electrochemically regenerated was maximally 2- 5 times higher than that in the reactor with FAD. By using this new electrode with catalytic function, a bioelectrocatalysts can be engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and FAD can function for biotransformation without an electron mediator and second oxidoreductase for cofactors recycling.