Browse > Article

Development of Bioreactors for Enrichment of Chemolithotrophic Methanogen and Methane Production  

Na, Byung-Kwan (Department of Biological Engineering, Seokyeong University)
Hwang, Tae-Sik (Department of Biological Engineering, Seokyeong University)
Lee, Sung-Hun (Department of Biological Engineering, Seokyeong University)
Ju, Dong-Hun (Division of Water Environment and Remediation, KIST)
Sang, Byung-In (Division of Water Environment and Remediation, KIST)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Microbiology and Biotechnology Letters / v.35, no.1, 2007 , pp. 52-57 More about this Journal
Abstract
A gas-circulating bioreactor was used for enrichment of autotrophic methanogens. Mixture of hydrogen and carbon dioxide (5:1) was used as a sole energy and carbon source. Anaerobic digestive sludge isolated from wastewater treatment system was inoculated into the gas-circulating bioreactor. The enrichment of two chemolithotrophic methanogens, Methanobacterium curvum and Methanobacterium oryzae was accomplished in the gas-circulating bioreactor. The enriched bacteria were cultivated in a bioreactor equipped with hollow-fiber hydrogen-supplying system (hollow-fiber bioreactor), and a hybrid-type bioreactor equipped with hollow-fiber hydrogen-supplying system and electrochemical redox control system. The methane productivity was maximally 30% (V/V) in the hollow-fiber bioreactors and 50% (V/V) in the hybrid-type bioreactor.
Keywords
Chemolithotrophic methanogen; Methanobacterium curvum; Methanobacterium oryzae; hollow-fiber; electrochemical bioreactor;
Citations & Related Records

Times Cited By SCOPUS : 1
연도 인용수 순위
1 Chin, K.J., and P.H Janssen. 2002. Propionate formation by Optutus terrae in pure culture and in mixed culture with a hydrogenotrophic methanogen and implications for carbon fluxes in anoxic rice paddy soil. Appl. Environ. Microbiol. 68: 2089-2092   DOI
2 Daniel, S.L., T. Hsu, S.I. Dean, and H.L. Drake. 1990. Characterization of the $H_2$- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J. Bacteriol. 172: 4464-4471   DOI   PUBMED
3 Gottschalk, G 1985. Bacterial Metabolism, second edition, pp 252-260. Springer-Verlag, New York
4 Lueders, T., and M.W. Friedrich. 2003. Evaluation of PCR amplification bias by terminal restriction fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic pure cultures and soil DNA extracts. Appl. Environ. Microbiol. 69: 320-326   DOI
5 Harris, J.E., P.A. Pinn, and R.P. Davis. 1984. Isolation and characterization of a novel thermophili, freshwater methanogen. Appl. Environ. Microbiol. 48: 1123-1128   PUBMED
6 Zinder, S.H., S.C. Cardwell, T. Anguish, M. Lee, and M. Koch. Methanogenesis in a thermophilic ($58^{\circ}C$) anaaerobic digestor: Methanothrix sp. an important aceticlastic methanogen. Appl. Environ. Microbiol. 47: 796-807
7 Westermann, P, B.K. Ahring, and Mah, R.A. 1989. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55: 514-515   PUBMED
8 Inloes, D.S., D.P. Taylor, S.N. Cohen, A.S. Michaels, and C.R. Robertson. 1983. Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactor. Appl. Environ. Microbiol. 46: 264-278   PUBMED
9 Cord-Ruwisch, R., H. Seitz, and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149: 350-357   DOI
10 Thauer, R.K., K. Jungermann, and K. Decker. 1977. Energy conservation in chemolithotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100-180   PUBMED
11 Oremland, R.S., R.P. Kiene, I. Mathrani, M.J. Whitica, and D.R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55: 994-1002   PUBMED
12 Ferguson, T.J., and R.A, Mah. 1983. Isolation and characterization of an $H_2$-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 46: 265-274
13 Breznak,J.A., and J.M. Switzer. 1986. Acetate synthesis from $H_2$ plus $CO_2$ by termite gut microbes. Appl. Environ. Microbiol. 52: 623-630   PUBMED
14 Robinson, J.A., and J.M. Tiedje. 1982. Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment. Appl. Environ. Microbiol. 44: 1374-1384   PUBMED
15 Dhillon, A., M. Lever, K.G. Lloyd, D.E. Albert, M.L. Sogin, and A. Teske. 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Suaymas Basin. Appl. Environ. Microbiol. 71: 4592-4601   DOI   ScienceOn