• 제목/요약/키워드: Biological invasion

검색결과 181건 처리시간 0.023초

DIFFERENT EFFECTS OF QUERCETIN ON MATRIX METALLOPROTEINASES EXPRESSION IN EARLY AND LATE PASSAGE HUMAN FIBROBLASTS

  • Eum, Sung-Yong;Oh, Jang-Hee;Park, Jong-Min;Chung, An-Sik
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.158-158
    • /
    • 2001
  • Bioflavonoids have been regarded as therapeutic agents for a wide range of disease including cancer. The increase of matrix metalloproteinases expression is a key event in several pathological conditions, e.g., dermal photocarcinogenesis, tumor initiation, invasion and metastasis. In this study, we investigated effects of quercetin, a major bioflavonoid in human diet, on matrix metalloproteinase (MMR)-1, MMP-2, MMP-3, MMP-9 mRNA expression during cellular aging in cultured human foreskin fibroblast. (omitted)

  • PDF

Chondrogenic Properties of Human Periosteum-derived Progenitor Cells (PDPCs) Embedded in a Thermoreversible Gelation Polymer (TGP)

  • Choi, Yang-Soo;Lim, Sang-Min;Shin, Hyun-Chong;Lee, Chang-Woo;Kim, Dong-Il
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권6호
    • /
    • pp.550-552
    • /
    • 2006
  • Periosteum-derived progenitor cells (PDPCs) were isolated using a fluorescence-activated cell sorter and their chondrogenic potential in biomaterials was investigated for the treatment of defective articular cartilage as a cell therapy. The chondrogenesis of PDPCs was conducted in a thermoreversible gelation polymer (TGP), which is a block copolymer composed of temperature-responsive polymer blocks such as poly(N-isopropylacrylamide) and of hydrophilic polymer blocks such as polyethylene oxide, and a defined medium that contained transforming growth $factor-{\beta}3\;(TGF-{\beta}3)$. The PDPCs exhibited chondrogenic potential when cultured in TGP. As the PDPCs-TGP is an acceptable biocompatible complex appropriate for injection into humans, this product might be readily applied to minimize invasion in a defected knee.

Effects of cutting and sowing seeds of native species on giant ragweed invasion and plant diversity in a field experiment

  • Byun, Chaeho;Choi, Ho;Kang, Hojeong
    • Journal of Ecology and Environment
    • /
    • 제44권4호
    • /
    • pp.256-263
    • /
    • 2020
  • Background: Ambrosia trifida is a highly invasive annual plant, but effective control methods have not been proposed. Among various eradication methods, cutting is a simple measure to control invasive plants, and sowing seeds of native plants may effectively increase biotic resistance to invasion. In this study, we conducted a field experiment with two treatments: cutting and sowing seeds of six native or naturalized plants. Results: We found a significantly lower A. trifida abundance after cutting than in the control (77% decrease). Sowing seeds of native species did not provide any additional benefit for the control of A. trifida, but increased the importance values and diversity of other native vegetation. The abundance of A. trifida was negatively correlated with that of other plant taxa based on plant cover, biomass, and density. However, biotic resistance of sown plants was not effective to control invasion because A. trifida was so competitive. Conclusions: We concluded that cutting is an effective measure to control Ambrosia trifida while sowing seeds of native plants can increase native plant diversity.

Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase

  • Fernandes, Marie;Duplaquet, Leslie;Tulasne, David
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.239-249
    • /
    • 2019
  • Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.

Cordycepin inhibits lipopolysaccharide-induced cell migration and invasion in human colorectal carcinoma HCT-116 cells through down-regulation of prostaglandin E2 receptor EP4

  • Jeong, Jin-Woo;Park, Cheol;Cha, Hee-Jae;Hong, Su Hyun;Park, Shin-Hyung;Kim, Gi-Young;Kim, Woo Jean;Kim, Cheol Hong;Song, Kyoung Seob;Choi, Yung Hyun
    • BMB Reports
    • /
    • 제51권10호
    • /
    • pp.532-537
    • /
    • 2018
  • Prostaglandin $E_2$ ($PGE_2$), a major product of cyclooxygenase-2 (COX-2), plays an important role in the carcinogenesis of many solid tumors, including colorectal cancer. Because $PGE_2$ functions by signaling through $PGE_2$ receptors (EPs), which regulate tumor cell growth, invasion, and migration, there has been a growing amount of interest in the therapeutic potential of targeting EPs. In the present study, we investigated the role of EP4 on the effectiveness of cordycepin in inhibiting the migration and invasion of HCT116 human colorectal carcinoma cells. Our data indicate that cordycepin suppressed lipopolysaccharide (LPS)-enhanced cell migration and invasion through the inactivation of matrix metalloproteinase (MMP)-9 as well as the down-regulation of COX-2 expression and $PGE_2$ production. These events were shown to be associated with the inactivation of EP4 and activation of AMP-activated protein kinase (AMPK). Moreover, the EP4 antagonist AH23848 prevented LPS-induced MMP-9 expression and cell invasion in HCT116 cells. However, the AMPK inhibitor, compound C, as well as AMPK knockdown via siRNA, attenuated the cordycepin-induced inhibition of EP4 expression. Cordycepin treatment also reduced the activation of CREB. These findings indicate that cordycepin suppresses the migration and invasion of HCT116 cells through modulating EP4 expression and the AMPK-CREB signaling pathway. Therefore, cordycepin has the potential to serve as a potent anti-cancer agent in therapeutic strategies against colorectal cancer metastasis.

Partial Characterization of the Pathogenic Factors Related to Chlamydia trachomatis Invasion of the McCoy Cell Membrane

  • Yeo, Myeng-Gu;Kim, Young-Ju;Park, Yeal
    • Journal of Microbiology
    • /
    • 제41권2호
    • /
    • pp.137-143
    • /
    • 2003
  • The present study was performed to identify pathogenic factors of Chlamydia trachomatis, which invade the host cell membrane. We prepared monoclonal antibody against C. trachomatis and searched for pathogenic factors using this antibody, and subsequently identified the surface components of the elementary body of C. trachomatis, i.e., major outer membrane protein (MOMP), lipopolysaccharide (LPS), and two other surface exposure proteins. These proteins are believed to be important in the pathogenesis of host cell chlamydial infection. Additionally, to identify factors related to the host cell and C. trachomatis, we prepared C. trachomatis infected and non-infected McCoy cell extracts, and reacted these with anti-chlamydial LPS monoclonal antibody. We found that anti-chlamydial LPS monoclonal antibody reacted with a 116 kDa proteinaceous McCoy cell membrane component.

Silencing of PDK1 Gene Expression by RNA Interference Suppresses Growth of Esophageal Cancer

  • Yu, Jing;Chen, Kui-Sheng;Li, Ya-Nan;Yang, Juan;Zhao, Lu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권8호
    • /
    • pp.4147-4151
    • /
    • 2012
  • The current study was conducted to explore the inhibitory effects of a small interfering RNA (siRNA) on 3-phosphoinositide-dependent protein kinase 1 (PDK1) expression in esophageal cancer 9706 (EC9706) cells and the influence on their biological behavior. After transfection of a synthesized PDK1 siRNA, PDK1 mRNA and protein expression and the phosphorylation level of the downstream Akt protein were assessed using RT-PCR and Western blot analysis. Proliferation, apoptosis, cell invasion and in vivo tumor formation capacity were also investigated using MTT, flow cytometry, Transwell invasion trials, and nude mouse tumor transplantion, respectively. PDK1 siRNA effectively suppressed PDK1 mRNA and protein expression, and down-regulated the phosphorylation level of the Akt protein in the EC9706 cells (P < 0.05). It also inhibited cell proliferation and invasion, and promoted apoptosis; such effects were particularly obvious at 48 h and 72 h after transfection (P < 0.05). Growth of transplanted tumors was inhibited in nude mice, with decreased PDK1 expression in tumor tissues. PDK1 may be closely correlated with proliferation, apoptosis and invasion of esophageal cancer cells and thus may serve as an effective target for gene therapy.

CircCOL1A2 Sponges MiR-1286 to Promote Cell Invasion and Migration of Gastric Cancer by Elevating Expression of USP10 to Downregulate RFC2 Ubiquitination Level

  • Li, Hang;Chai, Lixin;Ding, Zujun;He, Huabo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권7호
    • /
    • pp.938-948
    • /
    • 2022
  • Gastric cancers (GC) are generally malignant tumors, occurring with high incidence and threatening public health around the world. Circular RNAs (circRNAs) play crucial roles in modulating various cancers, including GC. However, the functions of circRNAs and their regulatory mechanism in colorectal cancer (CRC) remain largely unknown. This study focuses on both the role of circCOL1A2 in CRC progression as well as its downstream molecular mechanism. Quantitative polymerase chain reaction (qPCR) and western blot were adopted for gene expression analysis. Functional experiments were performed to study the biological functions. Fluorescence in situ hybridization (FISH) and subcellular fraction assays were employed to detect the subcellular distribution. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), RNA pull-down, and immunofluorescence (IF) and immunoprecipitation (IP) assays were used to explore the underlying mechanisms. Our results found circCOL1A2 to be not only upregulated in GC cells, but that it also propels the migration and invasion of GC cells. CircCOL1A2 functions as a competing endogenous RNA (ceRNA) by sequestering microRNA-1286 (miR-1286) to modulate ubiquitin-specific peptidase 10 (USP10), which in turn spurs the migration and invasion of GC cells by regulating RFC2. In sum, CircCOL1A2 sponges miR-1286 to promote cell invasion and migration of GC by elevating the expression of USP10 to downregulate the level of RFC2 ubiquitination. Our study offers a potential novel target for the early diagnosis and treatment of GC.

Insulin Resistance Reduces Sensitivity to Cis-Platinum and Promotes Adhesion, Migration and Invasion in HepG2 Cells

  • Li, Lin-Jing;Li, Guang-Di;Wei, Hu-Lai;Chen, Jing;Liu, Yu-Mei;Li, Fei;Xie, Bei;Wang, Bei;Li, Cai-Li
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3123-3128
    • /
    • 2014
  • The liver is normally the major site of glucose metabolism in intact organisms and the most important target organ for the action of insulin. It has been widely accepted that insulin resistance (IR) is closely associated with postoperative recurrence of hepatocellular carcinoma (HCC). However, the relationship between IR and drug resistance in liver cancer cells is unclear. In the present study, IR was induced in HepG2 cells via incubation with a high concentration of insulin. Once the insulin-resistant cell line was established, the stability of HepG2/IR cells was further tested via incubation in insulin-free medium for another 72h. Afterwards, the biological effects of insulin resistance on adhesion, migration, invasion and sensitivity to cis-platinum (DDP) of cells were determined. The results indicated that glucose consumption was reduced in insulin-resistant cells. In addition, the expression of the insulin receptor and glucose transportor-2 was downregulated. Furthermore, HepG2/IR cells displayed markedly enhanced adhesion, migration, and invasion. Most importantly, these cells exhibited a lower sensitivity to DDP. By contrast, HepG2/IR cells exhibited decreased adhesion and invasion after treatment with the insulin sensitizer pioglitazone hydrochloride. The results suggest that IR is closely related to drug resistance as well as adhesion, migration, and invasion in HepG2 cells. These findings may help explain the clinical observation of limited efficacy for chemotherapy on a background of IR, which promotes the invasion and migration of cancer cells.

Aesculetin의 항산화 활성과 MMP-9 활성 억제를 통한 암세포 침윤 억제 (Aesculetin Inhibits Cell Invasion through Inhibition of MMP-9 Activity and Antioxidant Activity)

  • 홍수경;김문무
    • 생명과학회지
    • /
    • 제26권6호
    • /
    • pp.673-679
    • /
    • 2016
  • 최근에 종양을 예방하거나 치료하기 위하여 안전하고 효과적인 항암화합물의 개발이 절실하게 요구되고 있다. 그 중에서 전통약재로부터 유래된 천연화합물은 항암후보소재로 관심의 대상이 되어왔다. 본 연구에서 사용된 aesculetin은 약용식물로 널리 알려진 산초나무의 주요 성분이다. Aesculetin은 항염증 및 항균과 같은 다양한 생물학적 효과를 가진다고 보고되었다. 그러나 세포침윤과 관련된 효과는 아직 발견되지 않았다. 그러므로 본 연구에서는 사람섬유아육종세포(HT1080)에서 항산화와 기질금속단백질분해효소(MMPs)에 대한 aesculetin의 효과를 조사하였다. 항산화 효과에 대한 연구에서 aesculetin은 DPPH radical에 대한 소거능뿐 만 아니라 환원력이 우수한 것으로 나타났다. 우선, MTT 실험을 이용하여 HT1080세포에서 aesculetin의 2 μM 이하의 농도에서 독성이 없는 것으로 나타났다. MMP-2와 MMP-9의 활성과 단백질 발현 수준에 대한 aesculetin의 억제효과는 gelatin zymography와 western blot을 이용하여 조사되었다. Aesculetin은 세포침윤과 관련된 MMP-9의 활성의 억제효과가 있는 것으로 나타났다. 더욱이, aesculetin은 TIMP-1의 단백질 발현 수준을 증가시켰으나, PMA로 자극된 MMP-9의 단백질 발현 수준을 감소시켰다. 더불어 aesculetin은 농도의존적으로 암전이와 관련된 세포침윤을 현저하게 억제하였다. 위의 결과들을 바탕으로, aesculetin은 세포침윤과 관련된 MMP의 활성과 발현의 억제를 통해 세포침윤을 예방할 수 있는 소재로서 기대된다.