• Title/Summary/Keyword: Biological information

Search Result 2,624, Processing Time 0.028 seconds

Identification of Combined Biomarker for Predicting Alzheimer's Disease Using Machine Learning

  • Ki-Yeol Kim
    • Korean Journal of Biological Psychiatry
    • /
    • v.30 no.1
    • /
    • pp.24-30
    • /
    • 2023
  • Objectives Alzheimer's disease (AD) is the most common form of dementia in older adults, damaging the brain and resulting in impaired memory, thinking, and behavior. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. The aim of our study was to identify differentially expressed genes associated with AD and combined biomarkers among them to improve AD risk prediction accuracy. Methods Machine learning methods were used to compare the performance of the identified combined biomarkers. In this study, three publicly available gene expression datasets from the hippocampal brain region were used. Results We detected 31 significant common genes from two different microarray datasets using the limma package. Some of them belonged to 11 biological pathways. Combined biomarkers were identified in two microarray datasets and were evaluated in a different dataset. The performance of the predictive models using the combined biomarkers was superior to those of models using a single gene. When two genes were combined, the most predictive gene set in the evaluation dataset was ATR and PRKCB when linear discriminant analysis was applied. Conclusions Combined biomarkers showed good performance in predicting the risk of AD. The constructed predictive nomogram using combined biomarkers could easily be used by clinicians to identify high-risk individuals so that more efficient trials could be designed to reduce the incidence of AD.

The Geographical Distribution and Genetic Distance of Yellowfin Goby (Acanthogobius flavimanus) off the Coast of Korea (한국 연안에 서식하는 문절망둑의 지리적 분포와 유전적 거리)

  • Hyunsang Shin;Youn Choi;Kiyoung Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.4
    • /
    • pp.235-247
    • /
    • 2024
  • A total of 64 individuals of Acanthogobius flavimanus, which inhabit the coast of Korea, were collected from 8 regions from July to August 2023. A haplotype network and a phylogenetic tree were created. The genomic DNA of the target fish species was compared and analyzed with the genomic DNA of four regions in Japan downloaded from the National Center for Biotechnology Information (NCBI). In the haplotype network of Acanthogoboius flavimanus, Eocheong-do (EC) and Goseong (MAJ) exhibited low genetic similarity with other regions in Korea and Japan. The Phylogenetic tree showed that the population of MAJ exhibited differences in genetic structure compared to populations in other regions of Korea and Japan, indicating a distant relationship. Most marine organisms are known to migrate and spread via ocean currents, which is the most crucial factor promoting gene flow through larvae between populations. The haplotype of Acanthogobius flavimanus in MAJ differs from the haplotypes in Korea and Japan. The population in MAJ is believed to have limited genetic exchange due to the North Korea Cold Currents. We identified haplotype patterns based on the geographical distribution of Acanthogobius flavimanus off the coast of Korea and inferred that ocean currents have some influence on genetic distances.

A review on gold nanowire based SERS sensors for chemicals and biological molecules

  • Rashida Akter;Hyuck Jin Lee;Toeun Kim;Jin Woo Choi;Hongki Kim
    • Analytical Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.201-210
    • /
    • 2024
  • Surface-enhanced Raman scattering (SERS) has emerged as a powerful technique for detecting and analyzing chemical and biological molecules at ultra-low concentrations. The effectiveness of SERS largely depends on structures with sub-10 nm gaps, prompting the proposal of various nanostructures as efficient SERS-active platforms. Among these, single-crystalline gold nanowires (AuNWs) are particularly promising due to their large dielectric constants, well-defined geometries, atomically smooth surfaces, and surface plasmon resonance across the visible spectrum, which produce strong SERS enhancements. This review comprehensively explores the synthesis, functionalization, and application of Au NWs in SERS. We discuss various methods for synthesizing AuNWs, including the vapor transport method, which influences their morphological and optical properties. We also review practical applications in chemical and biosensing, showcasing the adaptability of Au NWs-based SERS platforms in detecting a range of analytes, from environmental pollutants to biological markers. The review concludes with a discussion on future perspectives that aim to enhance sensor performance and broaden application domains, highlighting the potential of these sensors to revolutionize diagnostics and environmental monitoring. This review underscores the transformative impact of AuNW-based SERS sensors in analytical chemistry, environmental science, and biomedical diagnostics, paving the way for next-generation sensing technologies.

Identification and Characterization of Genes Involved in Cysteine Auxotrophy in Salmonella typhi (Salmonella typhi의 시스테인 영양요구성에 관여하는 유전자의 동정 및 특성 연구)

  • Lee, Sang-Ho;Kim, Sam-Woong;Yu, Jong-Earn;Yoo, Ah-Young;Kim, Young-Hee;Oh, Jeong-Il;Baek, Chang-Ho;Kang, Ho-Young
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1507-1512
    • /
    • 2008
  • In spite of long research period for Salmonella typhi, little information is known about the pathogenesis mechanism of human typhoid fever caused by S. typhi due to lack of infection model in animals. A wild-type of S. typhi Ty2 strain requires cysteine to grow on minimal media. We hypothesized that this cysteine requirement may restrict colonization of S. typhi in animals during infection process. Among the S. typhi strains carrying Salmonella typhimurium genomic library, we have isolated three S. typhi transformants growing on minimal media without cysteine. Although there were three ORFs in DNA of pBP71, the STM1490 ORF complemented cysteine auxotrophy of S. typhi. Analysis of the deduced amino acid sequence of the STM1490 homolog in S. typhi revealed that there are differences in two amino acids. Plasmids containing amino acid substitutions in STM1490 supported S. typhi growth on minimal media without cysteine, indicating irrelevance of these two amino acids to STM1490 function. These results tells us that there are other factors or systems involved in cysteine requirement of S. typhi.

Initial Preliminary Studies in National Long-Term Ecological Research (LTER) Stations of Daechung Reservoir

  • Lee, Sang-Jae;Lee, Jae-Hoon;Kim, Jong-Im;La, Geung-Hwan;Yoem, Min-Ae;Shin, Woong-Ghi;Kim, Hyun-Woo;Jang, Min-Ho;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.476-486
    • /
    • 2009
  • Major objective of our study was to introduce initial researches of national long-term ecological monitoring studies on Daechung Reservoir, as one of the representative lentic reservoir ecosystems in Korea. For the long-term ecological research (LTER), we conducted preliminary field monitoring during 2008~2009 and analyzed biological parameters such as phytoplankton, zooplankton, and freshwater fish along with chemical water quality and empirical model analysis. According to phytoplankton surveys, major taxa have varied largely depending on seasons and sites sampled. Overall phytoplankton data showed that cyanophyta dominated in the summer period and diatoms dominated in the winter. In zooplankton analysis, 25 species including 20 rotifers, 3 cladocerans and 2 copepods were collected during the survey. The relative abundance of rotifers (86.5%) was always greater than that of cladocerans (6.3%) or copepods (5.1%). There were distinct spatial and inter-annual changes in the abundance of zooplankton in the reservoir, displaying similar patterns in three sites with the exception of S3 during the study. According to fish surveys, 8 families and 39 species were observed during 2008~2009. The most dominant fish was an exotic species of Lepomis macrochirus (23%), indicating an severe influence of exotic species to the ecosystem. TP averaged $17.9\;{\mu}g\;L^{-1}$ ($6{\sim}80\;{\mu}g\;L^{-1}$), which was judged as a mesotrophy, and showed a distinct longitudinal gradients. TN averaged $1.585\;{\mu}g\;L^{-1}$ during the study and judged as hypereutrophic condition. Unlike TP, TN didn't show any large seasonal and spatial variations. Under the circumstances, nitrogen limitation may not happen in this system, indicating that nitrogen control is not effective in the watershed managements. These data generated in the LTER station will provide key information on long-term biological and water quality changes in relation to global warming and some clues for efficient reservoir ecosystem managements.

Monitoring of Biological Hazards in Herbal Crops from Korean Market (국내 유통중인 약용작물의 생물학적 위해요소 모니터링)

  • Lee, Young Seob;Lee, Sang Won;Kim, Yeon Bok;Kim, Ok Tae;Park, Kyeong Hun;Lee, Jae Won;Lee, Dae Young;Kim, Geum Soog;Kwon, Dong Yeul;Han, Sin Hee
    • Korean Journal of Medicinal Crop Science
    • /
    • v.24 no.2
    • /
    • pp.143-151
    • /
    • 2016
  • Background: The public has increasing concerns about herbal crops owing to insufficient information on biological hazards such as foodborne pathogens. Therefore, the objective of this study is the development of a herbal crop quality control system through monitoring with biological hazard analysis. Today, it is estimated that millions of people become ill every year from food contamination. The public demands agricultural products of stable and consistent quality. Governments have the responsibility of establishing the standards, legislation and enforcement programs necessary to control food quality and safety. However, research on the biosafety of herbal crop products is still insufficient. Therefore, the implementation of monitoring systems with high standards is critical for public safety. Methods and Results: In this study, we collected 52 samples of herbal crop products, and conducted both quantitative and qualitative biological hazard analysis. With biological hazard analysis, aerobic bacteria, Staphylococcus aureus, Salmonella spp., Escherichia coli, Coliforms, and Listeria spp. could be detected. Conclusions: Herbal crops were found to be contaminated with aerobic bacteria at $3.69{\pm}0.32log\;CFU/g$. Staphylococcus aureus, Salmonella spp., Escherichia coli, Coliforms, and Listeria spp. were not detected in any of the samples. This research suggests that continuous monitoring of biological hazards is required to improve the quality of herbal crops.

Floristic study of the Hanbando wetland(Yeongwol-gun, Gangwon-do) (한반도 습지(영월, 강원도)의 관속식물상)

  • An, Sung-Mo;Park, Yoo-Jung;Kang, Halam;Lee, Ha-Rim;Kim, Kyung-Ah;Yoo, Ki-Oug;Cheon, Kyeong-Sik
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.169-183
    • /
    • 2021
  • This study was carried out to investigate the flora of the Hanbando wetland (Yeongwol-gun, Gangwon-do) from April 2019 to May 2020. Vascular plants were grouped into 508 taxa, comprising 93 families, 309 genera, 456 species, 10 subspecies, 37 varieties, and 5 forms. Among the investigated 508 taxa, 2 endangered species, 8 rare plants, and 8 endemic plants were identified. The specific plants by floristic region were grouped into 71 taxa including, 3 taxa of grade V, 10 taxa of grade IV, 15 taxa of grade III, 17 taxa of grade II, and 26 taxa of grade I. Naturalized and ecosystem disturbing plants were grouped into 57 taxa and 5 taxa, respectively. The percentage of naturalized plants species and urbanization index were estimated to be 11.2% and 17.8%, respectively. This study provides important basic information for the efficient management of Hanbando wetland, which possess a high conservation value since it is forms part of the list of Ramsar wetlands.

Global Estimates on Biological Risks at Work

  • Jukka Takala;Alexis Descatha;A. Oppliger;H. Hamzaoui;Catherine Brakenhielm;Subas Neupane
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.390-397
    • /
    • 2023
  • Introduction: Biological risks are a major global problem in the workplace. The recent COVID-19 pandemic has highlighted the need for a more comprehensive understanding of the biological risks at work. This study presents data on both communicable infectious biological agents and noncommunicable factors leading to death and disability for the year 2021. Methods: We followed the methodology established by the International Labour Organization (ILO) in their past global estimates on occupational accidents and work-related diseases. We used relevant ILO estimates for hazardous substances and related population attributable fractions derived from literature, which were then applied to World Health Organization mortality data. The communicable diseases included in the estimates were tuberculosis, pneumococcal diseases, malaria, diarrheal diseases, other infectious diseases, neglected tropical diseases, influenza associated respiratory diseases and COVID-19. Noncommunicable diseases and injuries considered were Chronic Obstructive Diseases (COPD) due to organic dusts, asthma, allergic reactions and risks related to animal contact. We estimated death attributable to biological risk at work and disability in terms of disability adjusted life years (DALYs). Results: We estimated that in 2022, 550,819 deaths were caused by biological risk factors, with 476,000 deaths attributed to communicable infectious diseases and 74,000 deaths caused by noncommunicable factors. Among these, there were 223,650 deaths attributed to COVID-19 at work. We calculated the rate of 584 DALYs per 100,000 workers, representing an 11% increase from the previous estimate of the global burden of work-related disabilities measured by DALYs. Conclusion: This is a first update since previous 2007 ILO estimates, which has now increased by 74% and covers most biological risks factors. However, it is important to note that there may be other diseases and deaths are missing from the data, which need to be included when new information becomes available. It is also worth mentioning that while deaths caused by major communicable diseases including COVID-19 are relatively rare within the working population, absences from work due to these diseases are likely to be very common within the active workforce.

Research Productivity and Citation Performance of Researchers by Co-authorship Type in the Biological Sciences (생명과학 분야 연구자들의 공동연구 유형별 연구 생산성과 인용 성과 분석)

  • Kim, Mee-Jean
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.52 no.3
    • /
    • pp.149-169
    • /
    • 2018
  • The purpose of this study is to provide an in-depth analysis on the research productivity and the research performance of the School of Biological Sciences' faculty at the S University by their co-authorships and further to identify any difference in the citedness by their co-authorships. For the years 2004-2013, a total of 1,135 publications, published by thirty-nine faculty members, were collected and their publication patterns were analyzed by co-authorships. For the years 2004-2016, the citations to the 1,135 publications were analyzed by co-authorships. Among the four co-authorship types, the total number of publications by the domestic and international co-authorships amounted to 832(73.3%), and the study also found a statistical difference in the citation performance, i.e., the average number of citations per paper by co-authorships (F =4.830, $p=0.003^{**}$).

The chloroform fraction of Citrus limon leaves inhibits human gastric cancer cell proliferation via induction of apoptosis

  • Osman, Ahmed;Moon, Jeong Yong;Hyun, Ho Bong;Kang, Hye Rim;Cho, Somi Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.207-213
    • /
    • 2016
  • Little information about the biological activities of Citrus limon (lemon) leaves has been reported, whereas the fruit of Citrus limon (lemon) has been well-documented to contain various pro-health bio-functional compounds. In the present study, the antiproliferative activities of the lemon leaves were evaluated using several cancer cell lines. From the n-hexane, chloroform, ethyl acetate, n-butanol, and water fractions of methanolic extract of the leaves, the chloroform fraction of lemon leaves (CFLL) showed the most potent antiproliferative activity in the AGS human gastric cancer cells. The current study demonstrates that CFLL induces apoptosis in AGS cells, as evidenced by an increase in apoptotic bodies, cell population in the sub-G1 phase, Bax/Bcl-2 ratio, and cleavage of poly (ADP-ribose) polymerase (PARP), caspase-3 and caspase-9. Compositional analysis of the CFLL using gas chromatography mass spectrometry (GC-MS) resulted in the identification of 27 compounds including trans, trans-farnesol (3.19 %), farnesol (3.26 %), vanillic acid (1.45 %), (-)-loliolide (5.24 %) and palmitic acid (6.96 %). Understanding the modes of action of these compounds individually and/or synergistically would provide useful information about their applications in cancer prevention and therapy.