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Introduction

Alzheimer’s disease (AD) is the most common cause of de-
mentia in older adults with the loss of cognitive function and 
memory.1) The common symptoms of AD are difficulties in re-
membering recent events, thinking and reasoning, speaking and 
writing, making judgment and decisions, planning and perform-
ing familiar tasks, and changes in personality and behavior.2)

AD is not a part of normal aging, but increasing age is the 
strongest risk factor for AD.3) Three in 10 people over the age of 
85 years and one in every eight people over 65 years are estimat-
ed to develop AD.4) Family history and genetics, mild cognitive 
impairment (MCI), past head trauma, lifestyle, heart health, life-
long learning, and social engagement are other risk factors of 

AD.5) The risk of developing AD is higher if a first-degree rela-
tive (parent or siblings) has the disease.6) The genetic mechanism 
of AD among families remains unexplained.7) People with MCI 
have a higher chance of developing AD but is not a certainty and 
can be prevented by developing a healthy lifestyle.8) Some stud-
ies showed that the risk factors of heart disease may also increase 
the risk of developing AD.9) The diagnosis of AD is usually based 
on the patient’s medical history, mental status testing, and physi-
cal testing, even though several histopathological markers, such 
as extracellular β-amyloid plaques and neurofibrillary tangles 
within neurons, can determine AD presence.10)

Artificial intelligence (AI) is a method of simulating human 
intelligence processes using machines, especially computer sys-
tems. It can be used to analyze and improve the predictive per-
formance of models in various research areas. Machine learning 
(ML), a major branch of AI, has been widely used.11-15) 

In this study, we investigated significant gene sets related to 
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AD and identified combined biomarkers from selected signifi-
cant gene sets. We also performed functional annotations for 
AD-related genes. We aimed to provide a systematic approach 
to discovering new therapeutic targets for the treatment of AD. 
A risk-predictive nomogram was constructed for practical us-
age. This nomogram could be used as an objective guideline to 
assess high risk for AD. With the identification of high-risk in-
dividuals, more efficient therapeutic trials can be designed to 
reduce the incidence of AD.

Methods

Data preparation
Three publicly available gene expression datasets (GSE5281, 

GSE1297, and GSE48350) were used in this study. These datas-
ets are accessible from a public microarray database (gene ex-
pression omnibus [GEO]). GSE5281 and GSE48350 consist of six 
brain regions and four brain regions (a total of 54675 probes), 
respectively. These datasets were conducted in the same GPL570 
platform, Affy HG-U133 plus 2.0 (http://www.affymetrix.com/
analysis/index.affx). GSE1297 includes hippocampal (HIP) gene 
expression data on nine controls and 22 AD patients of varying 
severity, incipient, and moderate and severe (a total of 22283 
probes). This dataset was conducted in the GPL96 platform, 
Affy HG-U133A. In this study, we considered the HIP region in 
GSE5271 and GSE48350 and the severe stage in GSE1297. The 
datasets are summarized in Table 1.

Gene ontology
Gene ontology (GO)16) is a structured, defined, and controlled 

vocabulary for large-scale gene annotation. The Database for 
Annotation, Visualization, and Integrated Discovery (DAVID) 
was developed as a comprehensive functional annotation tool 
for relating functional terms to gene lists using a clustering al-
gorithm.17) To analyze differentially expressed genes at the func-
tional level, we performed pathway enrichment analysis using 
the online DAVID tool (https://david.ncifcrf.gov/).

GO hierarchy contains three subontologies: biological pro-
cesses, cellular components, and molecular functions. The p-

value is a modified Fisher’s exact test p-value. Because DAVID 
examines thousands of gene sets, it is necessary to test multiple 
hypotheses. DAVID provides a Benjamini-Hochberg false dis-
covery rate (FDR)-adjusted p-value, with a smaller p-value in-
dicating enrichment. We used the p-value and Benjamini-Ho-
chberg FDR to determine the significance of the enrichment of 
the terms for each annotation.

ML methods
In recent decades, rapid advancements in computational al-

gorithms and the increased availability of big data have enabled 
AI, one of the most exciting technologies in our everyday lives, 
to analyze and improve the predictive performance of models in 
various research areas. Specifically, ML, a major branch of AI, 
has been used widely. The ML algorithms used in this study are 
as follows.18) 

Linear discriminant analysis
Linear discriminant analysis (LDA) is a generalization of Fish-

er’s linear discriminant. It is a method used in statistics and other 
fields to find a linear combination of features that can characterize 
or separate two or more classes of objects or events. The result-
ing combination might be used as a linear classifier or for di-
mensionality reduction before classification. LDA is a kind of di-
mension-reduction technique commonly applied to supervised 
classification problems. It is used to model differences between 
groups, i.e., separating two or more groups from each other.19) 

k-Nearest neighbors algorithm
The k-nearest neighbors (KNN) algorithm is one of the sim-

plest techniques used in ML.20) It is used for both classification 
and regression and is preferred by many in the industry because 
of its ease of use and low calculation time. The KNN algorithm 
works by finding the distance between data points. The most 
common way to find this distance is to use the Euclidean dis-
tance. KNN computes the distance between each data point and 
the test data. It then finds the probability of these points being 
similar to the test data and classifies the data points based on 
which of them share the highest probability.21)

Table 1. Summarization of datasets used in the study

GSE5281 GSE1297 GSE48350

Platform GPL570, Affy HG-U133 plus 2.0 GPL96, Affy HG-U133A GPL570, Affy HG-U133 plus 2.0
Number of probes 54675 probes 22283 probes 54675 probes
Group (samples) Normal (13) AD (10) Normal (9) Severe AD (7) Normal (23) AD (18)

Age (yr, mean±SD) 79.6±9.4 77.8±5.7 85.3±2.7 84±4.0 83.7±9.0 84.2±6.8
Gender, female/male 3/10 4/6 2/7 5/2 11/12 9/9
AD, Alzheimer’s disease; SD, standard deviation

http://www.affymetrix.com/analysis/index.affx
http://www.affymetrix.com/analysis/index.affx
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Support vector machine 
A support vector machine (SVM) is a supervised learning 

model with associated learning algorithms that can analyze data 
for classification and regression analysis.22) The SVM algorithm 
is a popular ML tool that offers solutions to both classification 
and regression problems. It was developed at AT&T Bell Labo-
ratories by Vapnik and colleagues.22) The objective of the SVM 
algorithm is to find a hyperplane in the N-dimensional space 
(where N is the number of features) that distinctly classifies the 
data points. Support vectors are data points that are closer to the 
hyperplane and can influence the position and orientation of the 
hyperplane. Using these support vectors, the margin of the clas-
sifier is maximized. Deleting the support vectors will change the 
position of the hyperplane. 

Random forest
Random forest (RF) is an ensemble learning method for clas-

sification, regression, and other tasks. It operates by construct-
ing a multitude of decision trees at the training time, and out-
putting the class that is the mode of the classes (classification) 
or the mean/average prediction (regression) of individual trees.23) 
RF algorithms can be used to solve both regression and classifi-
cation problems, making it a diverse model that is widely used 
by engineers. 

All ML models were implemented using R programming lan-
guage, version 4.1.3 (R Foundation for Statistical Computing, 
Vienna, Austria),1) including GEOquery and limma packages 
for downloading the GEO datasets and identifying significant 
genes. The nomogram for predicting AD risk was created 
based on the significant genes selected.

In this study, we compared the accuracies of ML algorithms 
for predicting AD risk using the identified combined biomark-
ers. The study process is shown in Fig. 1.

Results

Expression patterns for identifying differentially 
expressed genes 

We detected 31 differently expressed common genes between 
the normal and AD groups using the limma package. Fig. 2 shows 
the expression patterns of the 31 common genes in the three dif-
ferent datasets (Fig. 2).

The identified genes showed highly divergent expression pat-
terns between the normal and AD groups in the GSE5281 and 
GSE1297 datasets but not in the GSE48350 dataset (Fig. 2C). The 
upregulated genes in the AD group included COX7C, DOCK3, 
CDK5, SLC25A12, PLK2, IQSEC1, NDUFB8, CAPRIN2, WDFY3, 
and PKP4. On the other hands, RXF2, TTN, RHOQ, SFTPB, and 

KIAA0485 were downregulated in the AD groups (Fig. 2A and B).

GO and pathway analysis
We next performed GO term annotation and pathway en-

richment analysis of the differentially expressed genes at the 
functional level using DAVID tool. The results are summarized 
in Table 2.

The AD-related genes were APC, NDUFB8, CDK5, COX7C, 
and ITPR1. The Huntington’s disease-related pathway was also 
included, although the FDR-adjusted p-value was not significant. 
The pathway significance may have been underestimated by 
selecting a small number of common genes (31 common genes 
were used for annotation). The most significant enriched GO 
term was “serine/threonine-protein kinase” (Table 2). 

Identification of combined predictive markers of AD risk 
To select the optimal number of combined biomarkers for risk 

Fig. 1. Study design. The data for duplicated genes in each gene 
expression dataset were averaged. AD-associated genes were 
identified in each dataset and the common genes were obtained 
from these datasets. AD, Alzheimer’s disease; GO, gene ontology; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; ML, machine 
learning; HTML, Hypertext Markup Language format.
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prediction, we tested random sets of 1–5 genes, with 200–500 rep-
licates and evaluated the association between the number of genes 
and the predictive model accuracy (Fig. 3). 

Predictive accuracy indicates the probability of the concor-
dance between the predicted and observed responses (logistic 
regression). The accuracy increased with increasing numbers of 
combined genes. We focused on identifying a predictive model 
based on the least number of genes. Therefore, we selected a two-
gene set for further analysis. Table 3 summarizes the five com-
bined sets of two genes resulting from the simulations shown 
in Fig. 3.

Performance comparison of AD risk predictive models 
We then compared the performance of the risk-predictive 

models using different ML algorithms. For this experiment, the 
dataset was randomly split into training (70% of data) and test-

ing (30% of data) datasets. The random dataset spilt was pro-
cessed repeatedly 100 times, and the model performance was 
summarized according to the mean values and standard devia-
tions calculated for all processing cycles (Table 4).

We compared the performance of two model types, one pre-
dicting the risk probability of AD based on a single gene and the 
other predicting the risk based on combined biomarkers. The 
performance of the models based on combined biomarkers was 
superior to that of the models based on single genes (Table 4). The 
predictive accuracies ranged from 0.814 to 1.000 for the train-
ing dataset and from 0.708 to 0.803 for the testing dataset for 
single gene models. For models based on combined biomarkers, 
RF was the best-performing model with the training dataset 
(accuracy = 1.0). Performance with the test datasets tended to 
depend on the combined biomarkers used. 

When we tested the models in GSE1297 and GSE48350, the per-

Fig. 2. Expression patterns of 31 genes common in the two different datasets. A: Gene expression pattern in GSE5281 between the 
normal and severe AD groups. B: Gene expression pattern in GSE1297 between the normal and severe AD groups. C: Gene expres-
sion pattern in GSE48350 between the normal and AD groups. The brighter the color, the more upregulated the gene. The dark orange 
color indicates downregulation. AD, Alzheimer’s disease.

A B C

GSE5281

Normal (13) Normal (23)Normal (9)AD (10) AD (18)Severe AD (7)

GSE1297 GSE48350
칼 라

Table 2. Summary of GO terms identified using the DAVID annotation database

Category Term Count p-value* Benjamini†

KEGG_PATHWAY Pathways of neurodegeneration-multiple diseases 6 1.7E-3 2.1E-1
KEGG_PATHWAY Alzheimer’s disease 5 5.6E-3 3.6E-1
KEGG_PATHWAY Huntington’s disease 4 2.0E-2 8.1E-1
KEGG_PATHWAY Retrograde endocannabinoid signaling 3 3.3E-2 9.1E-1
UP_KEYWORDS Serine/threonine-protein kinase 5 2.2E-3 4.0E-2
GOTERM_BP_DIRECT Peptidyl-serine phosphorylation 4 2.3E-3 5,1E-1
GOTERM_BP_DIRECT Regulation of synaptic plasticity 3 2.8E-3 5,1E-1
GOTERM_CC_DIRECT Postsynaptic density 5 4.5E-4 6.1E-2
GOTERM_CC_DIRECT Perinuclear region of the cytoplasm 5 1.9E-2 9.4E-1
GOTERM_MF_DIRECT Protein serine/threonine-protein kinase activity 5 2.6E-3 3.3E-1
GOTERM_MF_DIRECT ATP binding 8 6.3E-3 4.0E-1
*p-value, modified Fisher’s exact test p-value; †Benjamini, Benjamini-Hochberg false discovery rate adjusted p-value. GO, gene 
ontology; DAVID, Database for Annotation, Visualization, and Integrated Discovery; KEGG, Kyoto Encyclopedia of Genes and 
Genomes; BP, biological processe; CC, cellular component; MF, molecular function
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formance in GSE1297 was much better than in GSE48350. This 
can be interpreted as a characteristic of the dataset as GSE1297 
consists of normal and severe AD (Table 1). Considering the ac-
curacy of the three datasets, we constructed a predictive nomo-
gram by combining LZTS1 and SORBS2 genes. 

Nomogram
A nomogram was constructed to predict the AD risk proba-

bility using ATR and PRKCB (Fig. 4A) as the best combination 
of two genes for predicting the risk of AD (Table 4). The predic-
tive accuracy was 80.9% in the GSE48350 dataset using the LDA 
model.

ATR and PRKCB are genes upregulated and downregulated 
in AD, respectively. The risk probability for AD increased when 

the total nomogram points decreased. If the total points were 60 
for a patient, the AD risk probability was about 50% (Fig. 4A). 
For practical usage of the nomogram, we constructed a nomo-
gram in Hypertext Markup Language format and populated it 
with calculated total scores and probabilities (Fig. 4B). Fig. 4B 
shows that the AD risk probability of a patient with expression 
values of ATR and PRKCB of 0.6 and 0.4, respectively, was 32.5%. 
Additionally, the total points calculated by the nomogram could 
be used for stratifying patients according to AD risk probability. 

Discussion

This study identified 31 significant genes for AD risk predic-
tion. Among them, Lzts1 was reported to control both neuronal 
delamination and outer radial glial-like cell generation during 
mammalian cerebral development, suggesting a role in neuro-
nal development.24)25)

The neurodevelopmental spectrum was seen with CHD2 
variants.26) DOCK3-related neurodevelopmental syndrome was 
reported in a boy with developmental delay and hypotonia.27) 
Genetic variants in SLC9A9 were associated with measures of 
attention-deficit/hyperactivity disorder symptoms in families.28)

Kirtay et al.29) identified a physiological function of ATR be-
yond its DNA damage response role, in regulating neuronal ac-
tivity. Gerschütz et al.30) reported that PRKCB and MAPK1 were 
increased in the late AD stages. MAPK1 and PRKCB levels were 
low in the brainstem and cerebellum. The authors proposed that 
alterations in the expression of these two genes occurred early 
in the pathogenesis of AD in a region-specific manner. Antonell 
et al.31) and Zhou et al.32) also reported that the low expression of 
PRKCB was a potential causative factor of AD. This study also 
confirmed that PRKCB was downregulated in the AD group 
(Fig. 2A and B).

While ML can easily identify dataset trends and patterns, it 
requires massive datasets for training. Due to the small sample 
size, the limitation of this study was that the dataset could not 
represent the entire population of patients with AD. A model 
trained on a random sample of a dataset might have poor gen-
eralizability and perform poorly outside of that sample. Indeed, 
the use of larger training and test sets resulted in more accurate 
and reliable predictions.33) 

The implemented predictive model was presented in the form 
of a diagram, referred to as a nomogram. A nomogram is a graph-
ical representation of a statistical model. It provides the proba-
bility of a particular clinical outcome. The nomogram introduced 
in this study can serve as an objective guideline to assess high risk 
for AD. With the identification of high-risk individuals, more 
efficient trials can be designed to reduce the incidence of AD. The 

Fig. 3. Comparison of predictive accuracies using a combination 
of different numbers of genes among the 31 common significant 
genes. The vertical and horizontal axes represent the predictive 
accuracy and number of genes combined, respectively.

1.1

1.0

0.9

0.8

0.7

0.6

0.5

1 2 3 4 5

Number of genes

A
cc

ur
ac

y

Table 3. Summary of five combined gene sets
Gene 

set
Gene 

symbol
Description

1 CHD2 Chromodomain helicase DNA-binding  
  protein 2

DOCK3 Dedicator of cytokinesis 3
2 CAPRIN2 Caprin family member 2

COX7C Cytochrome c oxidase subunit 7C
3 LZTS1 Leucine zipper tumor suppressor 1

SORBS2 Sorbin and SH3 domain containing 2
4 ITPR1 ITPR1 antisense RNA 1 (head to head)

IQSEC1 IQ motif and Sec7 domain 1
5 ATR ATR serine/threonine kinase

PRKCB PDS5 cohesin-associated factor B
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Fig. 4. Nomogram for predicting the probability of AD risk. A: The probability of AD risk for each patient could be identified using the no-
mogram. B: Practical usage of the nomogram is available in a Hypertext Markup Language format. AD, Alzheimer’s disease.
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constructed nomogram could be used as a test version. A predic-
tive model using clinical variables and specific gene expression 
in large datasets of aging populations is needed in the future. 
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