• 제목/요약/키워드: Biological impacts

검색결과 207건 처리시간 0.033초

기능을 상실한 보 철거를 통한 하천생태통로 복원 - 곡릉천 곡릉2보 철거를 대상으로 - (Stream Eco-corridor Restoration by Out-aged Small Dam Removal - Focused on Gokreung River Gokreung 2 Small Dam Removal -)

  • 안홍규;우효섭;이동섭;김규호
    • 한국환경복원기술학회지
    • /
    • 제11권2호
    • /
    • pp.40-54
    • /
    • 2008
  • Small and large dams are installed in the course of a stream for maintaining the water level of the stream or obtaining agricultural water. Currently about 18,000 of them are installed in Korea to supply water. However, the environmental problems of small dams are well known : the interruption of stream eco-corridors, deterioration of water quality in the upper reaches of the small dam, changes in the habitats of riparian organisms, damages to the stream scenery. In a very few of these small dams artificial eco-corridors like fishways are installed, but the number is very minimal.Accordingly, to efficiently restore stream eco-corridors by removing these small dams, it will be necessary to closely examine physical impacts, such as changes in the riverbed and changes in the shape of the stream caused by the removal, chemical impacts, such as changes in water quality, and transport and accumulation of contaminated sediments and biological impacts, such as changes in the habitats of organisms, and develop related technologies in advance, and have these technologies verified through demonstration application in the sites. In this study, we analyzed the physical, chemical and ecological impacts of the removal of the above-mentioned small dams, and conducted a research on the demonstration small dam removal project for a spot investigation. As a result, the small dam removal will restore the eco-corridor, there by improving the habitat of fishes and crustaceans. The number of major underwater organisms inhabiting the Gokreungcheon, such as Korean spotted sleepers, Chinese minnows, Microphysogobio yaluensis, Abbottina rivularis, stone morokos, striped shinners, long-nosed barbels, and Chinese mitten crabs, is expected to increase, and the food chain in the ecosystem will improve so that species diversity will improve as well.

장래 기후변화와 토지이용 변화에 따른 농촌소유역의 수문 영향 분석 (Climate and Land use Changes Impacts on Hydrology in a Rural Small Watershed)

  • 김학관;강문성;이은정;박승우
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.75-84
    • /
    • 2011
  • The objective of this study is to evaluate the hydrologic impacts of climate and land use changes in a rural small watershed. HadCM3 (Hadley Centre Coupled Model, ver.3) A2 scenario and LARS-WG (Long Ashton Research Station - Weather Generator) were used to generate future climatic data. Future land use data were also generated by the CA-Markov (Cellular Automata-Markov) method. The Soil and Water Assessment Tool (SWAT) model was used to evaluate hydrologic impacts. The SWAT model was calibrated and validated with stream flow measured at the Baran watershed in Korea. The SWAT model simulation results agreed well with observed values during the calibration and validation periods. In this study, hydrologic impacts were analyzed according to three scenarios: future climate change (Scenario I), future land use change (Scenario II), and both future climate and land use changes (Scenario III). For Scenario I, the comparison results between a 30-year baseline period (1997~2004) and a future 30-year period (2011~2040) indicated that the total runoff, surface runoff, lateral subsurface runoff, groundwater discharge, and evapotranspiration increased as precipitation and temperature for the future 30-year period increased. The monthly variation analysis results showed that the monthly runoff for all months except September increased compared to the baseline period. For Scenario II, both the total and surface runoff increased as the built-up area, including the impervious surface, increased, while the groundwater discharge and evapotranspiration decreased. The monthly variation analysis results indicated that the total runoff increased in the summer season, when the precipitation was concentrated. In Scenario III, the results showed a similar trend to that of Scenario II. The monthly runoff for all months except October increased compared to the baseline period.

물-에너지-식량-토지 넥서스를 통한 미래 쌀 수급 변화에 따른 자원별 이용량 변화 분석 (Assessment of the Impacts of Rice Self-sufficiency on National Rresources in Korea through Water-Energy-Food-Land Nexus Approach)

  • 이상현;최진용;유승환;허승오
    • 한국농공학회논문집
    • /
    • 제60권4호
    • /
    • pp.93-103
    • /
    • 2018
  • The aim of this study is to apply the Water-Energy-Food-Land Nexus approach which can analyze the trade-offs among resources, and assess the holistic impacts of food security. First, we applied rice as a study crop and analyzed the trend of consumption of rice and the area of paddy fields. Second, the portfolios of water, energy, and land for rice production were constructed using data of footprints and productivity. Finally, the self-sufficiency ratio (SSR) of rice in target year was set as food security scenario and assessed the impacts of food security on water, energy, and land availability. In 2030, the SSR of rice decreased to 87 %, and water use for producing rice decreased from 4,728 to $3,350million\;m^3$, and the water availability index increased from 0.33 to 0.53. However, food security is essential issue and we set the 50 % and 100 % SSR of rice as high and low food security scenarios. For 100% SSR in 2030, about $3,508million\;m^3$ water was required and water availability index reached to 0.5. In other words, there is the trade-off between food security and water-energy-lands availability. Therefore, it is difficult to make a decision whether a high level of SSR is better or worse. However, this study showed the both positive and negative impacts by change of food security and it can be useful for setting the policy decision considering both food security and sustainable resource management at the same time.

주거단지 건설이 하천에 미치는 생태영향평가 (Environmental Impact Assessments along with Construction of Residential and Commercial Complex)

  • 안광국;한정호;이재훈
    • 환경영향평가
    • /
    • 제21권5호
    • /
    • pp.631-648
    • /
    • 2012
  • The integrative ecological approaches of chemical assessments, physical habitat modelling, and multi-metric biological health modelling were applied to Gwanpyeong Stream within Gap-Stream watersheds to evaluate environmental impacts on the constructions of residential and commercial complex. For the analysis, the surveys conducted from 45 sites of reference streams within the Gap-Stream watershed and 3 regular sites during 2009 - 2010. Physical habitat health, based on the habitat model of Qualitative Habitat Evaluation Index(QHEI) declined from the headwaters(good - fair condition) to the downstream(poor condition). Chemical water quality, based turbidity and electric conductivity(EC), was degraded toward to the downstream, and especially showed abrupt increases, compared to the values of control streams(CS). Also, concentrations of chlorophyll-a in the downstreams were greater compared to the control stream(CS), indicating an eutrophication. Biological health conditions, based on the Index of Biological Integrity(IBI) using fish assemblages, averaged 19.3 which is judged as a fair condition by the biological criteria of the Ministry of Environment, Korea. The comparisons of model metric values in sensitive species and riffle-benthic species on the Maximum Species Richness Line(MSRL) of 45 reference streams indicated a massive disturbances in all sampling locations. Also, tolerance guild and trophic guild analyses suggest that dominances of tolerant species and omnivores were evident, indicating a biological degradation by habitat disturbances and organic matter pollutions. There was no distinct longitudinal variations of IBI model values from the headwater to the downstream in spite of slight chemical and habitat health gradients among the sampling sites. Overall, integrative ecological health(IEH) scores, based on the chemical, physical, and biological parameters, were low compared to the 45 reference streams due to physical and chemical disturbances of massive constructions of the residential and commercial complex. This stream, thus showed a tendency of typical urban streams which are disturbed in the chemical water quality, habitat structures, and biological integrity. Effective stream management plans and restoration strategies are required in this urban stream for improving integrative stream health.

Histone tail cleavage as a novel epigenetic regulatory mechanism for gene expression

  • Yi, Sun-Ju;Kim, Kyunghwan
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.211-218
    • /
    • 2018
  • Chromatin is an intelligent building block that can express either external or internal needs through structural changes. To date, three methods to change chromatin structure and regulate gene expression have been well-documented: histone modification, histone exchange, and ATP-dependent chromatin remodeling. Recently, a growing body of literature has suggested that histone tail cleavage is related to various cellular processes including stem cell differentiation, osteoclast differentiation, granulocyte differentiation, mammary gland differentiation, viral infection, aging, and yeast sporulation. Although the underlying mechanisms suggesting how histone cleavage affects gene expression in view of chromatin structure are only beginning to be understood, it is clear that this process is a novel transcriptional epigenetic mechanism involving chromatin dynamics. In this review, we describe the functional properties of the known histone tail cleavage with its proteolytic enzymes, discuss how histone cleavage impacts gene expression, and present future directions for this area of study.

농지-임야 유역의 비점원 발생 BOD 부하의 추정 (Estimation of BOD Loading of Diffuse Pollution from Agricultural-Forestry Watersheds)

  • 김건하;권세혁
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.617-623
    • /
    • 2005
  • Forestry and agricultural land uses constitute 85% of Korea and these land uses are typically mixed in many watersheds. Biological Oxygen Demand (BOD) concentration is a primary factor for managing water qualities of the water resources in Korea. BOD loadings from diffuse sources, however, not well monitored yet. This study aims to assess BOD loadings from diffuse sources and their affecting factors to conserve quality of water resources. Event Mean Concentration (EMC) of BOD was calculated based on the monitoring data of forty rainfall events at four agricultural-forestry watersheds. Exceedence cumulative probability of BOD EMCs were plotted to show agricultural activities in a watershed impacts on the magnitude of EMCs. Prediction equation for each rainfall event was proposed to estimate BOD EMCs: $EMC_{BOD}(mg/L)=EXP(0.413+0.0000001157{\times}$(discharged runoff volume in $m^3$)+0.018${\times}$(ratio of agricultural land use to total watershed area).

Functional roles of protein phosphatase 4 in multiple aspects of cellular physiology: a friend and a foe

  • Park, Jaehong;Lee, Dong-Hyun
    • BMB Reports
    • /
    • 제53권4호
    • /
    • pp.181-190
    • /
    • 2020
  • Protein phosphatase 4 (PP4), one of serine/threonine phosphatases, is involved in many critical cellular pathways, including DNA damage response (DNA repair, cell cycle regulation, and apoptosis), tumorigenesis, cell migration, immune response, stem cell development, glucose metabolism, and diabetes. PP4 has been steadily studied over the past decade about wide spectrum of physiological activities in cells. Given the many vital functions in cells, PP4 has great potential to develop into the finding of key working mechanisms and effective treatments for related diseases such as cancer and diabetes. In this review, we provide an overview of the cellular and molecular mechanisms by which PP4 impacts and also discuss the functional significance of it in cell health.

Nanofood and Its Materials as Nutrient Delivery System (NDS)

  • Kim, Dong-Myong;Cho, Gyu-Seong
    • Journal of Applied Biological Chemistry
    • /
    • 제49권2호
    • /
    • pp.39-47
    • /
    • 2006
  • Incorporation of bioactive compounds such as vitamins, probiotics, bioactive peptides, and antioxidants into Nutrient Delivery System (NDS) for 'nanofood' provides simple way to develop novel functional foods that may have physiological benefits or reduce risks of diseases. As vital nutrient in nanofood, proteins possess unique functional properties including ability to form gels and emulsions, which allow them to be ideal nanofood materials for encapsulation of bioactive compounds. Based on protein physico-chemical properties, this review describes potential role of nanofood materials for development of NDS in hydrogel form, micro-or nano-particles. Applications of these nanofood materials to protect delivery-sensitive nutraceutical compounds are illustrated, and impacts of particle size on release properties are emphasized.

화학, 생물, 방사능 사고의 정신적 영향 (The Psychological Impacts of Chemical, Biological and Radiological Disasters)

  • 이다영;심민영
    • 대한불안의학회지
    • /
    • 제13권1호
    • /
    • pp.1-9
    • /
    • 2017
  • We reviewed the scientific literature on psychological effects of Chemical, Biological, Radiological, Nuclear, Explosive (CBRNE) disaster, which is one of the biggest threat to modern society. CBRNE disaster has the potential to cause specific physical symptoms and psychological distress in victims ; moreover, various toxic symptoms and carcinogenesis/mutation would be an important issue. Bioterrorism can cause localized outbreaks of infectious disease or pandemic disaster. Somatization as well as posttraumatic stress symptoms and depression are the characteristic psychological symptoms in CBRNE disaster's victims. CBRNE disasters could lead to large-scale public fear and social chaos due to the difficulties involved in verifying the extent of exposure and unfamiliar area to the common people. In the evacuation process, problems associated with adjustment and conflict between victims and residents should be considered.

COVID-19 Vaccine: Critical Questions with Complicated Answers

  • Haidere, Mohammad Faisal;Ratan, Zubair Ahmed;Nowroz, Senjuti;Zaman, Sojib Bin;Jung, You-Jung;Hosseinzadeh, Hassan;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • 제29권1호
    • /
    • pp.1-10
    • /
    • 2021
  • COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly community and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARS-CoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradicating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review.