1 |
Allan J, Hartman PG, Crane-Robinson C and Aviles FX (1980) The structure of histone H1 and its location in chromatin. Nature 288, 675-679
DOI
|
2 |
Thomas JO (1999) Histone H1: location and role. Curr Opin Cell Biol 11, 312-317
DOI
|
3 |
Wolffe AP and Kurumizaka H (1998) The nucleosome: a powerful regulator of transcription. Prog Nucleic Acid Res Mol Biol 61, 379-422
|
4 |
Demeret C, Vassetzky Y and Mechali M (2001) Chromatin remodelling and DNA replication: from nucleosomes to loop domains. Oncogene 20, 3086-3093
DOI
|
5 |
Kornberg RD and Lorch Y (1999) Chromatin-modifying and -remodeling complexes. Curr Opin Genet Dev 9, 148-151
DOI
|
6 |
Arnaudo AM and Garcia BA (2013) Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6, 24
DOI
|
7 |
Allis CD, Allen RL, Wiggins JC, Chicoine LG and Richman R (1984) Proteolytic processing of h1-like histones in chromatin: a physiologically and developmentally regulated event in Tetrahymena micronuclei. J Cell Biol 99, 1669-1677
DOI
|
8 |
Lee PY, Park BC, Chi SW et al (2016) Histone H4 is cleaved by granzyme A during staurosporine-induced cell death in B-lymphoid Raji cells. BMB Rep 49, 560-565
DOI
|
9 |
Lin R, Cook RG and Allis CD (1991) Proteolytic removal of core histone amino termini and dephosphorylation of histone H1 correlate with the formation of condensed chromatin and transcriptional silencing during Tetrahymena macronuclear development. Genes Dev 5, 1601-1610
DOI
|
10 |
Nurse NP, Jimenez-Useche I, Smith IT and Yuan C (2013) Clipping of flexible tails of histones H3 and H4 affects the structure and dynamics of the nucleosome. Biophys J 104, 1081-1088
DOI
|
11 |
Polach KJ, Lowary PT and Widom J (2000) Effects of core histone tail domains on the equilibrium constants for dynamic DNA site accessibility in nucleosomes. J Mol Biol 298, 211-223
DOI
|
12 |
Das C and Tyler JK (2013) Histone exchange and histone modifications during transcription and aging. Biochim Biophys Acta 1819, 332-342
|
13 |
Lee CK, Shibata Y, Rao B, Strahl BD and Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36, 900-905
DOI
|
14 |
Xie Y, Mustafa A, Yerzhan A et al (2017) Nuclear matrix metalloproteinases: functions resemble the evolution from the intracellular to the extracellular compartment. Cell Death Discov 3, 17036
DOI
|
15 |
Goulet B, Baruch A, Moon NS et al (2004) A cathepsin L isoform that is devoid of a signal peptide localizes to the nucleus in S phase and processes the CDP/Cux transcription factor. Mol Cell 14, 207-219
DOI
|
16 |
Goulet B, Sansregret L, Leduy L et al (2007) Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res 5, 899-907
DOI
|
17 |
Goulet B, Truscott M and Nepveu A (2006) A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L. Biol Chem 387, 1285-1293
|
18 |
Mishra RN and Kanungo MS (1994) Alterations in histones of the liver and oviduct of Japanese quail during aging. Mol Biol Rep 20, 15-18
DOI
|
19 |
Grotsky DA, Gonzalez-Suarez I, Novell A et al (2013) BRCA1 loss activates cathepsin L-mediated degradation of 53BP1 in breast cancer cells. J Cell Biol 200, 187-202
DOI
|
20 |
Xue Y, Vashisht AA, Tan Y, Su T and Wohlschlegel JA (2014) PRB1 is required for clipping of the histone H3 N terminal tail in Saccharomyces cerevisiae. PLoS One 9, e90496
DOI
|
21 |
Khalkhali-Ellis Z, Goossens W, Margaryan NV and Hendrix MJ (2014) Cleavage of Histone 3 by Cathepsin D in the involuting mammary gland. PLoS One 9, e103230
DOI
|
22 |
Fanjul-Fernandez M, Folgueras AR, Cabrera S and Lopez-Otin C (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803, 3-19
DOI
|
23 |
Nagase H, Visse R and Murphy G (2006) Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 69, 562-573
DOI
|
24 |
Mandal P, Verma N, Chauhan S and Tomar RS (2013) Unexpected histone H3 tail-clipping activity of glutamate dehydrogenase. J Biol Chem 288, 18743-18757
DOI
|
25 |
Santos-Rosa H, Kirmizis A, Nelson C et al (2009) Histone H3 tail clipping regulates gene expression. Nat Struct Mol Biol 16, 17-22
DOI
|
26 |
Shen J, Xiang X, Chen L et al (2017) JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Rep 18, 2131-2143
DOI
|
27 |
Mandal P, Azad GK and Tomar RS (2012) Identification of a novel histone H3 specific protease activity in nuclei of chicken liver. Biochem Biophys Res Commun 421, 261-267
DOI
|
28 |
Falk MM, Grigera PR, Bergmann IE, Zibert A, Multhaup G and Beck E (1990) Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. J Virol 64, 748-756
DOI
|
29 |
Vossaert L, Meert P, Scheerlinck E et al (2014) Identification of histone H3 clipping activity in human embryonic stem cells. Stem Cell Res 13, 123-134
DOI
|
30 |
Allis CD, Bowen JK, Abraham GN, Glover CV and Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20, 55-64
DOI
|
31 |
Tesar M and Marquardt O (1990) Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174, 364-374
DOI
|
32 |
Sudhan DR and Siemann DW (2015) Cathepsin L targeting in cancer treatment. Pharmacol Ther 155, 105-116
DOI
|
33 |
Turk V, Stoka V, Vasiljeva O et al (2012) Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta 1824, 68-88
DOI
|
34 |
Melo FR, Vita F, Berent-Maoz B, Levi-Schaffer F, Zabucchi G and Pejler G (2014) Proteolytic histone modification by mast cell tryptase, a serglycin proteoglycan-dependent secretory granule protease. J Biol Chem 289, 7682-7690
DOI
|
35 |
Papayannopoulos V, Metzler KD, Hakkim A and Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191, 677-691
DOI
|
36 |
Vogler C, Huber C, Waldmann T et al (2010) Histone H2A C-terminus regulates chromatin dynamics, remodeling, and histone H1 binding. PLoS Genet 6, e1001234
DOI
|
37 |
Panda P, Chaturvedi MM, Panda AK, Suar M and Purohit JS (2013) Purification and characterization of a novel histone H2A specific protease (H2Asp) from chicken liver nuclear extract. Gene 512, 47-54
DOI
|
38 |
Duncan EM, Muratore-Schroeder TL, Cook RG et al (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135, 284-294
DOI
|
39 |
Melo FR, Wallerman O, Paivandy A et al (2017) Tryptase-catalyzed core histone truncation: A novel epigenetic regulatory mechanism in mast cells. J Allergy Clin Immunol 140, 474-485
DOI
|
40 |
Duarte LF, Young AR, Wang Z et al (2014) Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 5, 5210
DOI
|
41 |
Grigera PR and Tisminetzky SG (1984) Histone H3 modification in BHK cells infected with foot-and-mouth disease virus. Virology 136, 10-19
DOI
|
42 |
Kim K, Punj V, Kim JM et al (2016) MMP-9 facilitates selective proteolysis of the histone H3 tail at genes necessary for proficient osteoclastogenesis. Genes Dev 30, 208-219
|
43 |
Watson DK and Moudrianakis EN (1982) Histonedependent reconstitution and nucleosomal localization of a nonhistone chromosomal protein: the H2A-specific protease. Biochemistry 21, 248-256
DOI
|
44 |
Mahendra G and Kanungo MS (2000) Age-related and steroid induced changes in the histones of the quail liver. Arch Gerontol Geriatr 30, 109-114
DOI
|
45 |
Gorovsky MA and Keevert JB (1975) Absence of histone F1 in a mitotically dividing, genetically inactive nucleus. Proc Natl Acad Sci U S A 72, 2672-2676
DOI
|
46 |
Eickbush TH, Godfrey JE, Elia MC and Moudrianakis EN (1988) H2a-specific proteolysis as a unique probe in the analysis of the histone octamer. J Biol Chem 263, 18972-18978
|
47 |
Okawa Y, Takada K, Minami J, Aoki K, Shibayama H and Ohkawa K (2003) Purification of N-terminally truncated histone H2A-monoubiquitin conjugates from leukemic cell nuclei: probable proteolytic products of ubiquitinated H2A. Int J Biochem Cell Biol 35, 1588-1600
DOI
|
48 |
Glibert P, Vossaert L, Van Steendam K et al (2014) Quantitative proteomics to characterize specific histone H2A proteolysis in chronic lymphocytic leukemia and the myeloid THP-1 cell line. Int J Mol Sci 15, 9407-9421
DOI
|
49 |
Pantazis P, Sarin PS and Gallo RC (1981) Detection of the histone-2A related polypeptide in differentiated human myeloid cells (HL-60) and its distribution in human acute leukemia. Int J Cancer 27, 585-592
DOI
|
50 |
Simpkins H and Mahon K (1977) The histone content of chromatin preparations from leukaemic cells. Br J Haematol 37, 467-473
DOI
|
51 |
Seto E and Yoshida M (2014) Erasers of histone acetylation: the histone deacetylase enzymes. Cold Spring Harb Perspect Biol 6, a018713
DOI
|
52 |
Minami J, Takada K, Aoki K et al (2007) Purification and characterization of C-terminal truncated forms of histone H2A in monocytic THP-1 cells. Int J Biochem Cell Biol 39, 171-180
DOI
|
53 |
Dhaenens M, Glibert P, Lambrecht S et al (2014) Neutrophil Elastase in the capacity of the "H2A-specific protease". Int J Biochem Cell Biol 51, 39-44
DOI
|
54 |
Black JC, Van Rechem C and Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48, 491-507
DOI
|
55 |
Narlikar GJ, Sundaramoorthy R and Owen-Hughes T (2013) Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490-503
DOI
|
56 |
Azad GK and Tomar RS (2014) Proteolytic clipping of histone tails: the emerging role of histone proteases in regulation of various biological processes. Mol Biol Rep 41, 2717-2730
DOI
|
57 |
Dhaenens M, Glibert P, Meert P, Vossaert L and Deforce D (2015) Histone proteolysis: a proposal for categorization into 'clipping' and 'degradation'. Bioessays 37, 70-79
DOI
|
58 |
Phillips DM and Johns EW (1959) A study of the proteinase content and the chromatography of thymus histones. Biochem J 72, 538-544
DOI
|
59 |
Osley MA (2008) Epigenetics: how to lose a tail. Nature 456, 885-886
DOI
|
60 |
Zhou P, Wu E, Alam HB and Li Y (2014) Histone cleavage as a mechanism for epigenetic regulation: current insights and perspectives. Curr Mol Med 14, 1164-1172
DOI
|
61 |
Eickbush TH, Watson DK and Moudrianakis EN (1976) A chromatin-bound proteolytic activity with unique specificity for histone H2A. Cell 9, 785-792
DOI
|
62 |
Strahl BD and Allis CD (2000) The language of covalent histone modifications. Nature 403, 41-45
DOI
|
63 |
Roadmap Epigenomics Consortium, Kundaje A, Meuleman W et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330
DOI
|
64 |
Bannister AJ and Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21, 381-395
DOI
|
65 |
Beck HC, Nielsen EC, Matthiesen R et al (2006) Quantitative proteomic analysis of post-translational modifications of human histones. Mol Cell Proteomics 5, 1314-1325
DOI
|
66 |
Chen Y, Sprung R, Tang Y et al (2007) Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 6, 812-819
DOI
|
67 |
Dai L, Peng C, Montellier E et al (2014) Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 10, 365-370
DOI
|
68 |
Fierz B and Muir TW (2012) Chromatin as an expansive canvas for chemical biology. Nat Chem Biol 8, 417-427
DOI
|
69 |
Jenuwein T and Allis CD (2001) Translating the histone code. Science 293, 1074-1080
DOI
|
70 |
Kouzarides T (2007) Chromatin modifications and their function. Cell 128, 693-705
DOI
|
71 |
Shahbazian MD and Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76, 75-100
DOI
|
72 |
Tan M, Luo H, Lee S et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146, 1016-1028
DOI
|
73 |
Xie Z, Dai J, Dai L et al (2012) Lysine succinylation and lysine malonylation in histones. Mol Cell Proteomics 11, 100-107
DOI
|
74 |
Young NL, Dimaggio PA and Garcia BA (2010) The significance, development and progress of high-throughput combinatorial histone code analysis. Cell Mol Life Sci 67, 3983-4000
DOI
|
75 |
Lawrence M, Daujat S and Schneider R (2016) Lateral Thinking: How Histone Modifications Regulate Gene Expression. Trends Genet 32, 42-56
DOI
|
76 |
Bentley GA, Lewit-Bentley A, Finch JT, Podjarny AD and Roth M (1984) Crystal structure of the nucleosome core particle at 16 A resolution. J Mol Biol 176, 55-75
DOI
|
77 |
Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184, 868-871
DOI
|
78 |
Kornberg RD and Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98, 285-294
DOI
|
79 |
Kornberg RD and Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184, 865-868
DOI
|
80 |
Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260
DOI
|
81 |
Reeve JN, Sandman K and Daniels CJ (1997) Archaeal histones, nucleosomes, and transcription initiation. Cell 89, 999-1002
DOI
|