• Title/Summary/Keyword: Biological hydrogen

Search Result 530, Processing Time 0.025 seconds

Function of gaseous hydrogen sulfide in liver fibrosis

  • Lee, Jae-Ho;Im, Seung-Soon
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.481-487
    • /
    • 2022
  • Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.

Antioxidant and Anti-aging Effects of Extracts from Leaves of Castanea crenata Siebold & Zucc. in Human Dermal Fibroblast (피부 섬유아세포에서 밤나무 잎 추출물의 항산화 및 항노화 효능)

  • Choi, Sun-Il;Lee, Jong Seok;Lee, Sarah;Lee, Hye Jin;Kim, Byung-Jik;Yeo, Joohong;Jung, Tae-Dong;Cho, Bong-Yeon;Choi, Seung-Hyun;Lee, Jin-Ha;Kim, Jong-Yea;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.3
    • /
    • pp.243-248
    • /
    • 2017
  • Intracellular and extracellular oxidative stress initiated by reactive oxygen species (ROS) causes skin aging, which is characterized by wrinkles and atypical pigmentation. Use of antioxidant is an effective approach to prevent symptoms related to ROS-induced aging of the skin. Therefore, the antioxidant and anti-aging effect of Castanea crenata Siebold & Zucc. extracts (LCE) was investigated in this study. The LCE markedly reduced the hydrogen peroxide-induced cell damage, intracellular ROS, and oxidative stress-induced senescence in human dermal fibroblasts (HDFs). These results indicate that LCE might have beneficial effects on oxidative stress-induced damage and thus reduce skin aging.

Rheological, Morphological and Electrical Properties of Polycarbonate/Multi-walled Carbon Nanotube Composites

  • Han, Mi-Sun;Sung, Yu-Taek;Chung, Ji-Woong;Kim, Woo-Nyon;Lee, Heon-Sang;Kum, Chong-Ku
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.220-220
    • /
    • 2006
  • Rheological and electrical properties of the polycarbonate (PC) / multi-walled carbon nanotube (MWNT) were studied. The MWNT was funtoinalized by treating with the hydrogen peroxide ($H_{2}O_{2}$). The electrical conductivity showed higher value for the PC/MWNT ($H_{2}O_{2}$ treated, freeze drying) composites compared that of the PC/MWNT ($H_{2}O_{2}$ treated, thermal drying) composites. From the results of the morphological, rheological, and electrical properties of the PC/MWNT composites, it is suggested that the electrical and rheological properties of the PC/MWNT composites are affected by the MWNT-MWNT network structure which is related with the MWNT morphologies such as the degree of aggregation and aspect ratio of the MWNT.

  • PDF

Effect of Hydrogen Treatment on Anatase TiO2 Nanotube Arrays for Photoelectrochemical Water Splitting

  • Kim, Hyun Sik;Kang, Soon Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2067-2072
    • /
    • 2013
  • Hydrogen ($H_2$) treatment using a two-step $TiO_2$ nanotube (TONT) film was performed under various annealing temperatures from $350^{\circ}C$ to $550^{\circ}C$ and significantly influenced the extent of hydrogen treatment in the film. Compared with pure TONT films, the hydrogen-treated TONT (H:TONT) film showed substantial improvement of material features from structural, optical and electronic aspects. In particular, the extent of enhancement was remarkable with increasing annealing temperature. Light absorption by the H:TONT film extended toward the visible region, which was attributable to the formation of sub-band-gap states between the conduction and valence bands, resulting from oxygen vacancies due to the $H_2$ treatment. This increased donor concentration about 1.5 times higher and improved electrical conductivity of the TONT films. Based on these analyses and results, photoelectrochemical (PEC) performance was evaluated and showed that the H:TONT film prepared at $550^{\circ}C$ exhibited optimal PEC performance. Approximately twice higher photocurrent density of 0.967 $mA/cm^2$ at 0.32 V vs. NHE was achieved for the H:TONT film ($550^{\circ}C$) versus 0.43 $mA/cm^2$ for the pure TONT film. Moreover, the solar-to-hydrogen efficiency (STH, ${\eta}$) of the H:TONT film was 0.95%, whereas a 0.52% STH efficiency was acquired for the TONT film. These results demonstrate that hydrogen treatment of TONT film is a simple and effective tool to enhance PEC performance with modifying the properties of the original material.

Charateristics of Hydrogen Iodide Decomposition using Ni-Pt Bimetallic Catalyst in Sulfur-Iodine Process (황-요오드 열화학 수소 생산 공정에서 니켈-백금 이원금속 촉매를 이용한 요오드화수소 분해 특성)

  • Kim, Soo-Young;Go, Yoon-Ki;Park, Chu-Sik;Bae, Ki-Kwang;Kim, Young-Ho
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • This study was performed to develop a low Pt content catalyst as a catalyst for HI decomposition in S-I process. Bimetallic catalysts added various amounts of Pt on a silica supported Ni catalyst were prepared by impregnation method. HI decomposition was carried out using a fixed bed reactor. As a result, Ni-Pt bimetallic catalyst showed enhanced catalytic activity compared with each monometallic catalyst. Deactivation of Ni-Pt catalyst was not observed while deactivation of Ni monometallic catalyst was rapidly occurred in HI decomposition. The HI conversion of Ni-Pt bimetallic catalyst was increased similar to Pt catalyst with increase of the reaction temperature over a temperature range 573K to 773K. From the TG analysis, it was shown that $NiI_2$ remained on the Ni(5.0)-Pt(0.5)/$SiO_2$ catalyst after the HI decomposition reaction was decomposed below 700K. It seems that small amount of Pt in bimetallic catalyst increase the decomposition of $NiI_2$ generated after the decomposition of HI. Consequently, it was considered that the activity of Ni-Pt bimetallic catalyst was kept during the HI decomposition reaction.

Effects of pH and Carbon Sources on Biohydrogen Production by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides

  • Lee, Jung-Yeol;Chen, Xue-Jiao;Lee, Eun-Jung;Min, Kyung-Sok
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.400-406
    • /
    • 2012
  • To improve the hydrogen yield from biological fermentation of organic wastewater, a co-culture system of dark- and photo-fermentation bacteria was investigated. In a pure-culture system of the dark-fermentation bacterium Clostridium butyricum, a pH of 6.25 was found to be optimal, resulting in a hydrogen production rate of 18.7 ml-$H_2/l/h$. On the other hand, the photosynthetic bacterium Rhodobacter sphaeroides could produce the most hydrogen at 1.81mol-$H_2/mol$-glucose at pH 7.0. The maximum specific growth rate of R. sphaeroides was determined to be 2.93 $h^{-1}$ when acetic acid was used as the carbon source, a result that was significantly higher than that obtained using either glucose or a mixture of volatile fatty acids (VFAs). Acetic acid best supported R. sphaeroides cell growth but not hydrogen production. In the co-culture system with glucose, hydrogen could be steadily produced without any lag phase. There were distinguishable inflection points in a plot of accumulated hydrogen over time, resulting from the dynamic production or consumption of VFAs by the interaction between the dark- and photo-fermentation bacteria. Lastly, the hydrogen production rate of a repeated fed-batch run was 15.9 ml-$H_2/l/h$, which was achievable in a sustainable manner.

Production of Hydrogen and Volatile Fatty Acid by Enterobacter sp. T4384 Using Organic Waste Materials

  • Kim, Byung-Chun;Deshpande, Tushar R.;Chun, Jongsik;Yi, Sung Chul;Kim, Hyunook;Um, Youngsoon;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.2
    • /
    • pp.189-194
    • /
    • 2013
  • In a study of hydrogen-producing bacteria, strain T4384 was isolated from rice field samples in the Republic of Korea. The isolate was identified as Enterobacter sp. T4384 by phylogenetic analysis of 16S rRNA and rpoB gene sequences. Enterobacter sp. T4384 grew at a temperature range of $10-45^{\circ}C$ and at an initial pH range of 4.5-9.5. Strain T4384 produced hydrogen at 0-6% NaCl by using glucose, fructose, and mannose. In serum bottle cultures using a complete medium, Enterobacter sp. T4384 produced 1,098 ml/l $H_2$, 4.0 g/l ethanol, and 1.0 g/l acetic acid. In a pH-regulated jar fermenter culture with the biogas removed, 2,202 ml/l $H_2$, 6.2 g/l ethanol, and 1.0 g/l acetic acid were produced, and the lag-phase time was 4.8 h. Strain T4384 metabolized the hydrolysate of organic waste for the production of hydrogen and volatile fatty acid. The strain T4384 produced 947 ml/l $H_2$, 3.2 g/l ethanol, and 0.2 g/l acetic acid from 6% (w/v) food waste hydrolysate; 738 ml/l $H_2$, 4.2 g/l ethanol, and 0.8 g/l acetic acid from Miscanthus sinensis hydrolysate; and 805 ml/l $H_2$, 5.0 g/l ethanol, and 0.7 g/l acetic acid from Sorghum bicolor hydrolysate.

A Characterization Study on Nafion$^{(R)}$/$ZrO_2-TiO_2$ Composite Membranes for PEMFC Operation at High Temperature and Low Humidity (고온/저가습 PEMFC 운전을 위한 Nafion$^{(R)}$/$ZrO_2-TiO_2$ 복합 전해질 막의 특성 연구)

  • Park, Ki-Tae;Chun, Jeong-Hwan;Choi, Dong-Woong;Kim, Sung-Hyun
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2011
  • [ $ZrO_2-TiO_2$ ]binary oxides with various Zr:Ti molar ratios were prepared by sol-gel method and Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were fabricated for proton exchange membrane fuel cells (PEMFCs) at high temperature and low humidity. Water uptake, Ion exchange capacity (IEC), and proton conductivity of Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membranes were characterized and these composite membranes were tested in a single cell at $120^{\circ}C$ with various relative humidity (R.H.) conditions. The obtained results were compared with the unmodified membranes (Nafion$^{(R)}$ 112 and Recast Nafion$^{(R)}$). A Nafion$^{(R)}$/$ZrO_2-TiO_2$ composite membrane with 1:3 of Zr:Ti molar ratio showed the highest performance. The performance showed 500 mW/$cm^2$ (0.499V) at $120^{\circ}C$, 50% R. H., and 2 atm.

Effect of Skim Milk-Alginate Beads on Survival Rate of Bifidobacteria

  • Yu, Won-Kyu;Yim, Tae-Bin;Lee, Ki-Yong;Heo, Tae-Ryeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.2
    • /
    • pp.133-138
    • /
    • 2001
  • In this study, an attempt was made to increase the survival rate of bifidobacteria entrapped in alginate in the gastrointestinal tract, and to investigate the potential industrial applications, for example lyophilized capsules and yogurt. First, the protective effect of various food additives on bifidobacterial survivability was determined after exposure to simulated gastric juices and bile salts. The additives used in this study were skim milk (SM), polydextrose (PD), soy fiber (SF), yeast extract (YE), chitosan (CS), $\kappa$-carageenan ($\kappa$-C) and whey, which were added at 0.6% concentration (w/v) to 3% alginate-bifidobacterial solution. In the simulated gastric juices and bile salts, the protective effect of 0.6% skim milk-3% alginate (SM-A) beads on the survival rate of bifidobacteria proved to be higher than the other additives. Second, the hydrogen ion permeation was detected through SM-A vessel without bifidobacterial cells at different SM concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%). There were no differences in terms of the pH decrease in SM-A vessels at 0.6%, 0.8%, and 1.0% (w/v) SM concentrations. The survival rate of bifidobacteria in SM-A beads would appear to be related to the SM buffering capacity against hydrogen ions and its tendency to reduce the pore size of bead. In this experiment, the survival rate of bifidobacteria entrapped in beads containing 0.6% SM showed the highest viability after exposure to simulated gastric juices for 3h, thereby indicating that 0.6% SM is the optimum concentration fir 3% alginate bead preparation. Third, the effect of SM-A beads on the freeze-drying and yogurt storage for 10 days was investigated. SM-A beads were found to be more efficient for freeze drying and yogurt storage than untrapped cells and the alginate bead. Consequently, the survival rate of bifidobacteria entrapped in SM-A beads was increased in simulated gastric juices, bile salts and probiotic products, such as lyophilized capsules and yogurt, SM-A beads can be expected to produce high value probiotic products.

  • PDF

Antioxidant and Anti-aging Effects of Extracts from Leaves of the Quercusaliena Blume on Human Dermal Fibroblast (피부 섬유아세포에서 갈참나무 잎 추출물의 항산화 및 항노화 효능)

  • Choi, Sun-Il;Lee, Jong Seok;Lee, Sarah;Yeo, Joohong;Jung, Tae-Dong;Cho, Bong-Yeon;Choi, Seung-Hyun;Sim, Wan-Sup;Han, Xionggao;Lee, Jin-Ha;Kim, Jong Dai;Lee, Ok-Hwan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.2
    • /
    • pp.140-145
    • /
    • 2018
  • The skin of the human body occupies the largest surface area of the body and acts as a protection for the person's internal organs. As such, the skin is a major target of oxidative stressors, and these oxidative stressors are known to contribute to skin aging over the course of time. For the most part, an antioxidant is an effective approach to utilize to prevent symptoms related to the reactive oxygen species (ROS)-induced aging of the skin. Therefore, we investigated the antioxidant and anti-aging activity of the leaves of the Quercusaliena Blume extract (QBE). In our study, we confirmed that the cell viability tested with XTT {2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide innersalt} assay was not affected up to a concentration of $100{\mu}g/mL$. In addition, the cell viability of HDF cells induced by hydrogen peroxide was recovered from 81% to 104% after treatment with QBE, which showed the greater protective effect than that of ascorbic acid. Treatments of QBE dose-dependently inhibited reactive oxygen species (ROS) production in HDF cells induced by hydrogen peroxide, which correlated with their protective effects on cell viability. Since QBE treatment exhibited the suppression effect of skin aging by decreasing the ROS production, QBE could be used as a not only natural anti-aging but also antioxidant resource.