Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.10.124

Function of gaseous hydrogen sulfide in liver fibrosis  

Lee, Jae-Ho (Department of Physiology, Keimyung University School of Medicine)
Im, Seung-Soon (Department of Physiology, Keimyung University School of Medicine)
Publication Information
BMB Reports / v.55, no.10, 2022 , pp. 481-487 More about this Journal
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.
Keywords
CBS; CSE; Hydrogen sulfide; Liver fibrosis; Metabolism; MPST;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Untereiner AA, Wang R, Ju Y and Wu L (2016) Decreased gluconeogenesis in the absence of cystathionine gamma-lyase and the underlying mechanisms. Antioxid Redox Signal 24, 129-140   DOI
2 Hipolito A, Nunes SC, Vicente JB and Serpa J (2020) Cysteine aminotransferase (CAT): a pivotal sponsor in metabolic remodeling and an ally of 3-mercaptopyruvate sulfurtransferase (MST) in cancer. Molecules 25, 3984   DOI
3 Mikami Y and Kimura H (2012) A mechanism of retinal protection from light-induced degeneration by hydrogen sulfide. Commun Integr Biol 5, 169-171   DOI
4 Wu D, Zheng N, Qi K et al (2015) Exogenous hydrogen sulfide mitigates the fatty liver in obese mice through improving lipid metabolism and antioxidant potential. Med Gas Res 5, 1   DOI
5 Wu D, Zhong P, Wang Y et al (2020) Hydrogen sulfide attenuates high-fat diet-induced non-alcoholic fatty liver disease by inhibiting apoptosis and promoting autophagy via reactive oxygen species/phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling pathway. Front Pharmacol 11, 585860   DOI
6 Wang P and Wu L (2018) Hydrogen sulfide and nonalcoholic fatty liver disease. Hepatobiliary Surg Nutr 7, 122-124   DOI
7 Carter RN, Gibbins MTG, Barrios-Llerena ME et al (2021) The hepatic compensatory response to elevated systemic sulfide promotes diabetes. Cell Rep 37, 109958   DOI
8 Gorini F, Del Turco S, Sabatino L, Gaggini M and Vassalle C (2021) H2S as a bridge linking inflammation, oxidative stress and endothelial biology: a possible defense in the fight against SARS-CoV-2 infection? Biomedicines 9, 1107   DOI
9 Jensen-Cody SO and Potthoff MJ (2021) Hepatokines and metabolism: deciphering communication from the liver. Mol Metab 44, 101138   DOI
10 Melaram R (2021) Environmental risk factors implicated in liver disease: a mini-review. Front Public Health 9, 683719   DOI
11 Tan G, Pan S, Li J et al (2011) Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One 6, e25943   DOI
12 Previte DM, O'Connor EC, Novak EA, Martins CP, Mollen KP and Piganelli JD (2017) Reactive oxygen species are required for driving efficient and sustained aerobic glycolysis during CD4+ T cell activation. PLoS One 12, e0175549   DOI
13 Rada P, Gonzalez-Rodriguez A, Garcia-Monzon C and Valverde AM (2020) Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis 11, 802   DOI
14 Li N, Wang MJ, Jin S et al (2016) The H2S donor NaHS changes the expression pattern of h2s-producing enzymes after myocardial infarction. Oxid Med Cell Longev 2016, 6492469
15 Snezhkina AV, Kudryavtseva AV, Kardymon OL et al (2019) ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev 2019, 6175804
16 Dhamija E, Paul SB and Kedia S (2019) Non-alcoholic fatty liver disease associated with hepatocellular carcinoma: an increasing concern. Indian J Med Res 149, 9-17   DOI
17 Raman M and Allard J (2006) Non alcoholic fatty liver disease: a clinical approach and review. Can J Gastroenterol 20, 345-349   DOI
18 Li M, Xu C, Shi J et al (2018) Fatty acids promote fatty liver disease via the dysregulation of 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Gut 67, 2169-2180   DOI
19 Nguyen TTP, Kim DY, Lee YG et al (2021) SREBP-1c impairs ULK1 sulfhydration-mediated autophagic flux to promote hepatic steatosis in high-fat-diet-fed mice. Mol Cell 81, 3820-3832 e3827   DOI
20 Nguyen TTP, Kim DY, Im SS and Jeon TI (2021) Impairment of ULK1 sulfhydration-mediated lipophagy by SREBF1/SREBP-1c in hepatic steatosis. Autophagy 17, 4489-4490   DOI
21 Lan A, Liao X, Mo L et al (2011) Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS One 6, e25921   DOI
22 Hine C, Harputlugil E, Zhang Y et al (2015) Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160, 132-144   DOI
23 Arif MS, Yasmeen T, Abbas Z et al (2020) Role of exogenous and endogenous hydrogen sulfide (H2S) on functional traits of plants under heavy metal stresses: a recent perspective. Front Plant Sci 11, 545453
24 Whiteman M and Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4, 13-32   DOI
25 Ryazantseva NV, Novitsky VV, Starikova EG, Kleptsova LA, Jakushina VD and Kaigorodova EV (2011) Role of hydrogen sulfide in the regulation of cell apoptosis. Bull Exp Biol Med 151, 702-704   DOI
26 Li X, Chen M, Shi Q, Zhang H and Xu S (2020) Hydrogen sulfide exposure induces apoptosis and necroptosis through lncRNA3037/miR-15a/BCL2-A20 signaling in broiler trachea. Sci Total Environ 699, 134296   DOI
27 Norris EJ, Culberson CR, Narasimhan S and Clemens MG (2011) The liver as a central regulator of hydrogen sulfide. Shock 36, 242-250   DOI
28 Polhemus DJ and Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114, 730-737   DOI
29 Sun HJ, Wu ZY, Nie XW, Wang XY and Bian JS (2021) Implications of hydrogen sulfide in liver pathophysiology: mechanistic insights and therapeutic potential. J Adv Res 27, 127-135   DOI
30 Hellmich MR and Szabo C (2015) Hydrogen sulfide and cancer. Handb Exp Pharmacol 230, 233-241   DOI
31 Pedre B and Dick TP (2021) 3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biol Chem 402, 223-237   DOI
32 Stipanuk MH and Beck PW (1982) Characterization of the enzymic capacity for cysteine desulphhydration in liver and kidney of the rat. Biochem J 206, 267-277   DOI
33 Zheng Y, Ji X, Ji K and Wang B (2015) Hydrogen sulfide prodrugs-a review. Acta Pharm Sin B 5, 367-377   DOI
34 Xie X, Dai H, Zhuang B, Chai L, Xie Y and Li Y (2016) Exogenous hydrogen sulfide promotes cell proliferation and differentiation by modulating autophagy in human keratinocytes. Biochem Biophys Res Commun 472, 437-443   DOI
35 Phillips CM, Zatarain JR, Nicholls ME et al (2017) Upregulation of cystathionine-beta-synthase in colonic epithelia reprograms metabolism and promotes carcinogenesis. Cancer Res 77, 5741-5754
36 Fan HN, Wang HJ, Yang-Dan CR et al (2013) Protective effects of hydrogen sulfide on oxidative stress and fibrosis in hepatic stellate cells. Mol Med Rep 7, 247-253   DOI
37 Wang B, Zeng J and Gu Q (2017) Exercise restores bioavailability of hydrogen sulfide and promotes autophagy influx in livers of mice fed with high-fat diet. Can J Physiol Pharmacol 95, 667-674   DOI
38 Robert K, Nehme J, Bourdon E et al (2005) Cystathionine beta synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128, 1405-1415   DOI
39 Ci L, Yang X, Gu X et al (2017) Cystathionine gammalyase deficiency exacerbates CCl4-Induced acute hepatitis and fibrosis in the mouse liver. Antioxid Redox Signal 27, 133-149   DOI
40 Zhao S, Song T, Gu Y et al (2021) Hydrogen sulfide alleviates liver injury through the S-sulfhydrated-kelchlike ECH-associated protein 1/nuclear erythroid 2-related factor 2/low-density lipoprotein receptor-related protein 1 pathway. Hepatology 73, 282-302   DOI
41 Wang SS, Chen YH, Chen N et al (2017) Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis 8, e2688   DOI
42 Cooper AJ (1983) Biochemistry of sulfur-containing amino acids. Annu Rev Biochem 52, 187-222   DOI
43 Guo W, Kan JT, Cheng ZY et al (2012) Hydrogen sulfide as an endogenous modulator in mitochondria and mitochondria dysfunction. Oxid Med Cell Longev 2012, 878052
44 Wu DD, Wang DY, Li HM, Guo JC, Duan SF and Ji XY (2019) Hydrogen sulfide as a novel regulatory factor in liver health and disease. Oxid Med Cell Longev 2019, 3831713
45 Lucantoni F, Martinez-Cerezuela A, Gruevska A et al (2021) Understanding the implication of autophagy in the activation of hepatic stellate cells in liver fibrosis: are we there yet? J Pathol 254, 216-228   DOI
46 Lv S, Liu H and Wang H (2021) Exogenous hydrogen sulfide plays an important role by regulating autophagy in diabetic-related diseases. Int J Mol Sci 22, 6715   DOI
47 Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ and Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13, 25-97   DOI
48 Wang R (2002) Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16, 1792-1798   DOI
49 Dombkowski RA, Russell MJ and Olson KR (2004) Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286, 678-685
50 Wojcicka G, Jamroz-Wisniewska A, Atanasova P, Chaldakov GN, Chylinska-Kula B and Beltowski J (2011) Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacol Res 63, 68-76   DOI
51 Filliol A and Schwabe RF (2019) Contributions of fibroblasts, extracellular matrix, stiffness, and mechanosensing to hepatocarcinogenesis. Semin Liver Dis 39, 315-333   DOI
52 Malone Rubright SL, Pearce LL and Peterson J (2017) Environmental toxicology of hydrogen sulfide. Nitric Oxide 71, 1-13   DOI
53 Doujaiji B and Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30, 76-80   DOI
54 Ahmad A, Gero D, Olah G and Szabo C (2016) Effect of endotoxemia in mice genetically deficient in cystathioninegamma-lyase, cystathionine-beta-synthase or 3-mercaptopyruvate sulfurtransferase. Int J Mol Med 38, 1683-1692   DOI
55 Tao B, Wang R, Sun C and Zhu Y (2017) 3-Mercaptopyruvate sulfurtransferase, not cystathionine beta-synthase nor cystathionine gamma-lyase, mediates hypoxia-induced migration of vascular endothelial cells. Front Pharmacol 8, 657   DOI
56 Ahmad A, Druzhyna N and Szabo C (2019) Effect of 3-mercaptopyruvate sulfurtransferase deficiency on the development of multiorgan failure, inflammation, and wound healing in mice subjected to burn injury. J Burn Care Res 40, 148-156   DOI
57 Mateus I and Prip-Buus C (2022) Hydrogen sulphide in liver glucose/lipid metabolism and non-alcoholic fatty liver disease. Eur J Clin Invest 52, e13680   DOI
58 Kimura H (2002) Hydrogen sulfide as a neuromodulator. Mol Neurobiol 26, 13-19   DOI
59 Li L, Rose P and Moore PK (2011) Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51, 169-187   DOI
60 Han Y, Shang Q, Yao J and Ji Y (2019) Hydrogen sulfide: a gaseous signaling molecule modulates tissue homeostasis: implications in ophthalmic diseases. Cell Death Dis 10, 293   DOI
61 Comas F and Moreno-Navarrete JM (2021) The impact of H2S on obesity-associated metabolic disturbances. Antioxidants (Basel) 10, 633   DOI
62 Pineiro-Ramil M, Burguera EF, Hermida-Gomez T et al (2022) Reduced levels of H2S in diabetes-associated osteoarthritis are linked to hyperglycaemia, Nrf-2/HO-1 signalling downregulation and chondrocyte dysfunction. Antioxidants (Basel) 11, 628   DOI
63 Grant DM (1991) Detoxification pathways in the liver. J Inherit Metab Dis 14, 421-430   DOI
64 Peng HY, Lucavs J, Ballard D et al (2021) Metabolic reprogramming and reactive oxygen species in T cell immunity. Front Immunol 12, 652687   DOI
65 Brand MD, Orr AL, Perevoshchikova IV and Quinlan CL (2013) The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol 169 Suppl 2, 1-8
66 Jia J, Wang Z, Zhang M et al (2020) SQR mediates therapeutic effects of H2S by targeting mitochondrial electron transport to induce mitochondrial uncoupling. Sci Adv 6, eaaz5752   DOI
67 Mustafa AK, Gadalla MM, Sen N et al (2009) H2S signals through protein S-sulfhydration. Sci Signal 2, ra72
68 Shibuya N, Koike S, Tanaka M et al (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4, 1366   DOI
69 Augsburger F and Szabo C (2020) Potential role of the 3-mercaptopyruvate sulfurtransferase (3-MST)-hydrogen sulfide (H2S) pathway in cancer cells. Pharmacol Res 154, 104083   DOI
70 Cao X, Ding L, Xie ZZ et al (2019) A review of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal 31, 1-38   DOI
71 Murphy B, Bhattacharya R and Mukherjee P (2019) Hydrogen sulfide signaling in mitochondria and disease. FASEB J 33, 13098-13125   DOI
72 Nandi SS and Mishra PK (2017) H2S and homocysteine control a novel feedback regulation of cystathionine beta synthase and cystathionine gamma lyase in cardiomyocytes. Sci Rep 7, 3639   DOI
73 Aroca A, Gotor C and Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9, 1369   DOI
74 Abe K and Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16, 1066-1071   DOI
75 Xiao Q, Ying J, Xiang L and Zhang C (2018) The biologic effect of hydrogen sulfide and its function in various diseases. Medicine (Baltimore) 97, e13065   DOI
76 Bhatia M and Gaddam RR (2021) Hydrogen sulfide in inflammation: a novel mediator and therapeutic target. Antioxid Redox Signal 34, 1368-1377   DOI
77 Zaichko NV, Melnik AV, Yoltukhivskyy MM, Olhovskiy AS and Palamarchuk IV (2014) Hydrogen sulfide: metabolism, biological and medical role. Ukr Biochem J 86, 5-25
78 Minamishima S, Bougaki M, Sips PY et al (2009) Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation 120, 888-896   DOI
79 Wedmann R, Bertlein S, Macinkovic I et al (2014) Working with "H2S": facts and apparent artifacts. Nitric Oxide 41, 85-96   DOI
80 Scammahorn JJ, Nguyen ITN, Bos EM, Van Goor H and Joles JA (2021) Fighting oxidative stress with sulfur: hydrogen sulfide in the renal and cardiovascular systems. Antioxidants (Basel) 10, 373   DOI
81 Jiang T, Yang W, Zhang H, Song Z, Liu T and Lv X (2020) Hydrogen sulfide ameliorates lung ischemiareperfusion injury through SIRT1 signaling pathway in type 2 diabetic rats. Front Physiol 11, 596
82 Liu H, Bai XB, Shi S and Cao YX (2009) Hydrogen sulfide protects from intestinal ischaemia-reperfusion injury in rats. J Pharm Pharmacol 61, 207-212   DOI
83 Sekijima M, Sahara H, Miki K et al (2017) Hydrogen sulfide prevents renal ischemia-reperfusion injury in CLAWN miniature swine. J Surg Res 219, 165-172   DOI
84 Elrod JW, Calvert JW, Morrison J et al (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104, 15560-15565   DOI
85 Li XH, Xue WL, Wang MJ et al (2017) H2S regulates endothelial nitric oxide synthase protein stability by promoting microRNA-455-3p expression. Sci Rep 7, 44807   DOI
86 Zhang S, Pan C, Zhou F et al (2015) Hydrogen sulfide as a potential therapeutic target in fibrosis. Oxid Med Cell Longev 2015, 593407
87 Fan HN, Wang HJ, Ren L et al (2013) Decreased expression of p38 MAPK mediates protective effects of hydrogen sulfide on hepatic fibrosis. Eur Rev Med Pharmacol Sci 17, 644-652
88 Wynn TA and Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med 18, 1028-1040   DOI
89 Fouad AA, Hafez HM and Hamouda A (2020) Hydrogen sulfide modulates IL-6/STAT3 pathway and inhibits oxidative stress, inflammation, and apoptosis in rat model of methotrexate hepatotoxicity. Hum Exp Toxicol 39, 77-85   DOI
90 Zeng J, Lin X, Fan H and Li C (2013) Hydrogen sulfide attenuates the inflammatory response in a mouse burn injury model. Mol Med Rep 8, 1204-1208   DOI
91 Mao YQ and Fan XM (2015) Autophagy: a new therapeutic target for liver fibrosis. World J Hepatol 7, 1982-1986   DOI
92 Singh KK, Lovren F, Pan Y et al (2015) The essential autophagy gene ATG7 modulates organ fibrosis via regulation of endothelial-to-mesenchymal transition. J Biol Chem 290, 2547-2559   DOI
93 Zhang F, Jin H, Wu L et al (2017) Diallyl trisulfide suppresses oxidative stress-induced activation of hepatic stellate cells through production of hydrogen sulfide. Oxid Med Cell Longev 2017, 1406726
94 Takahashi H, Shigefuku R, Yoshida Y et al (2014) Correlation between hepatic blood flow and liver function in alcoholic liver cirrhosis. World J Gastroenterol 20, 17065-17074   DOI
95 Iwakiri Y, Shah V and Rockey DC (2014) Vascular pathobiology in chronic liver disease and cirrhosis - current status and future directions. J Hepatol 61, 912-924   DOI
96 Coulouarn C and Clement B (2014) Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J Hepatol 60, 1306-1309   DOI
97 Li L, Salto-Tellez M, Tan CH, Whiteman M and Moore PK (2009) GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic Biol Med 47, 103-113   DOI
98 Xia M, Zhang Y, Jin K, Lu Z, Zeng Z and Xiong W (2019) Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell Biosci 9, 27   DOI
99 Degli Esposti D, Hamelin J, Bosselut N et al (2012) Mitochondrial roles and cytoprotection in chronic liver injury. Biochem Res Int 2012, 387626
100 Modis K, Coletta C, Erdelyi K, Papapetropoulos A and Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27, 601-611   DOI
101 Nuttall FQ, Ngo A and Gannon MC (2008) Regulation of hepatic glucose production and the role of gluconeogenesis in humans: is the rate of gluconeogenesis constant? Diabetes Metab Res Rev 24, 438-458   DOI
102 Paul BD, Snyder SH and Kashfi K (2021) Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. Redox Biol 38, 101772   DOI
103 Shimizu Y, Polavarapu R, Eskla KL et al (2018) Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol 116, 29-40   DOI
104 Modis K, Ju Y, Ahmad A et al (2016) S-Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacol Res 113, 116-124   DOI
105 Damba T, Zhang M, Buist-Homan M, van Goor H, Faber KN and Moshage H (2019) Hydrogen sulfide stimulates activation of hepatic stellate cells through increased cellular bio-energetics. Nitric Oxide 92, 26-33   DOI
106 Cruz-Pineda WD, Parra-Rojas I, Rodriguez-Ruiz HA, Illades-Aguiar B, Matia-Garcia I and Garibay-Cerdenares OL (2022) The regulatory role of insulin in energy metabolism and leukocyte functions. J Leukoc Biol 111, 197-208
107 Han HS, Kang G, Kim JS, Choi BH and Koo SH (2016) Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 48, e218   DOI
108 Irimia JM, Meyer CM, Segvich DM et al (2017) Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice. J Biol Chem 292, 10455-10464   DOI
109 Manna P, Gungor N, McVie R and Jain SK (2014) Decreased cystathionine-gamma-lyase (CSE) activity in livers of type 1 diabetic rats and peripheral blood mononuclear cells (PBMC) of type 1 diabetic patients. J Biol Chem 289, 11767-11778   DOI