• Title/Summary/Keyword: Biological feed additives

Search Result 28, Processing Time 0.029 seconds

Utilization of Persimmon Peel and Its Tannin Extracts for Animal Feeding (가축사양에 있어서 감 과피와 감 과피탄닌 추출물의 이용)

  • Sin, Yeong-Geun;An, Byeong-Gi;Gang, Chang-Won
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2006.11a
    • /
    • pp.28-42
    • /
    • 2006
  • Tannins are phenolic compounds that precipitate proteins and composed of a very diverse group of oligomers and polymers. Tannins are potential biological antioxidants, which are widely believed to be an important line of defense against oxidative damage and may participate in the prevention of cancer and cardiovascular disease. Persimmon(Diospyros kaki L.) has been cultivated in East Asia and is a good source of nutritional antioxidant vitamins, carotenoids and tannins. In general persimmon peel was regarded as a waste matter, although based on recent studies, the peel contains more carotenoids and polyphenols than pulp. Several investigation conducted in experimental animals have reported that dietary persimmon fruit and peel effectively lowered the levels of plasma total cholesterol and LDL-cholesterol. We conducted experiments to investigate in vitro antioxidative activities of persimmon peel powder (PP) and its soluble tannin extract (ST) and their dietary effects on productive performances and physiological responses in poultry. The PP and ST exhibited in vitro antioxidative activity in SOD - like activity model. The yolk color and eggshell color were significantly improved by the addition of PP and ST into layer diets. The contents of total cholesterol, triacylglycerol and phospholipid of liver in the groups fed diets containing PP and ST tended to be reduce as compared with those of control. With adding of PP and ST, Haugh unit was increased after 7 and 14 days of storage. In conclusion, PP and ST can be used as valuable feed additives for reducing hepatic lipid contents without harmful effects on overall productive performances and physiological responses in laying hens.

  • PDF

Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review

  • Lyudmila K. Gerunova;Taras V. Gerunov;Lydia G. P'yanova;Alexander V. Lavrenov;Anna V. Sedanova;Maria S. Delyagina;Yuri N. Fedorov;Natalia V. Kornienko;Yana O. Kryuchek;Anna A. Tarasenko
    • Journal of Veterinary Science
    • /
    • v.25 no.2
    • /
    • pp.23.1-23.15
    • /
    • 2024
  • The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.

Effect of Galacto-mannan-oligosaccharides or Chitosan Supplementation on Cytoimmunity and Humoral Immunity in Early-weaned Piglets

  • Yin, Y.-L.;Tang, Z.R.;Sun, Z.H.;Liu, Z.Q.;Li, T.J.;Huang, R.L.;Ruan, Z.;Deng, Z.Y.;Gao, B.;Chen, L.X.;Wu, G.Y.;Kim, S.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.723-731
    • /
    • 2008
  • Immunomodulatory feed additives might offer alternatives to antimicrobial growth promoters in pig production. This experiment was designed to determine the effects of dietary galacto-mannan-oligosaccharide (GMOS) and chitosan oligosaccharide (COS) supplementation on the immune response in early-weaned piglets. Forty 15-day-old piglets (Duroc$\times$Landrace$\times$Yorkshire) with an average live body weight of $5.6{\pm}0.51kg$ were weaned and randomly assigned to 4 treatment groups that were fed maize-soybean meal diets containing either basal, 110 mg/kg of lincomycin, 250 mg/kg of COS or 0.2% GMOS, respectively, over a 2-week period. Another six piglets of the same age were sacrificed on the same day at the beginning of the study for sampling, in order to obtain baseline values. Interleukin (IL)-1${\beta}$gene expression in peripheral blood monocytes, jejunal mucosa and lymph nodes, as well as serum levels of IL-1${\beta}$ IL-2 and IL-6, IgA, IgG, and IgM, were evaluated for 5 pigs from each group at 15 and 28 days of age. The results indicate that weaning stress resulted in decreases in serum antibody and cytokine levels. Dietary supplementation with GMOS or COS enhanced (p<0.05) IL-1${\beta}$gene expression in jejunal mucosa and lymph nodes, as well as serum levels of IL-1${\beta}$ IL-2, IL-6, IgA, IgG and IgM compared to supplementation with lincomycin. These findings suggest that GMOS or COS may enhance the cell-mediated immune response in early-weaned piglets by modulating the production of cytokines and antibodies, which shows that GMOS or COS have different effects than the antibiotic on animal growth and health.

Antibacterial Activity of Essential Oils from Pinaceae Leaves Against Fish Pathogens (어병 세균에 대한 소나무과 잎 정유의 항세균 효과)

  • HAM, Youngseok;YANG, Jiyoon;CHOI, Won-Sil;AHN, Byoung-Jun;PARK, Mi-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.527-547
    • /
    • 2020
  • Fish pathogens cause not only economic damages to fish farming but also infectious pathogens known as a zoonotic agent. Since the continued use of antibiotics to control fish pathogens entails side effects, materials of natural origin need to be developed. The purpose of this study is to discover coniferous essential oils with excellent antibacterial effects in order to develop antibiotic alternatives. We have extracted essential oils using hydro-distillation from the leaves of Abies holophylla, Pinus thunbergii, Pinus parviflora, Tsuga sieboldii, and Pinus rigitaeda, which are all Pinaceae family. And, we have evaluated antibacterial activity with the extracted essential oils against Edwardsiella tarda, Photobacterium damselae, Streptococcus parauberis, and Lactococcus garvieae, which are fish pathogens. As a result, the essential oils from A. holophylla and P. thunbergii showed the selectively strong antibacterial activity against E. tarda and P. damselae, which are gram-negative bacteria. From GC-MS analysis, it was identified that main component of A. holophylla essential oils are (-)-bornyl acetate (29.45%), D-limonene (20.47%), and camphene (11.73%), and that of P. thunbergii essential oils is α-pinene (59.81%). In addition, we found three compounds: neryl acetate, (-)-borneol, and (-)-carveol, which are oxygenated monoterpenes. These exist in a very small amount but exhibit the same efficacy as essential oil. Therefore, we expect that A. holophylla and P. thunbergii essential oils having excellent growth inhibitory effect against gram-negative fish pathogens can be used as biological products such as feed additives and fishery products.

Anti-inflammatory and Cytotoxic Screening Evaluation of Macroalgae Resources (국내 해조류 자원의 항염증 및 세포독성 스크리닝 평가)

  • Kim, C.W.;Chang, K.J.;Kim, Y.B.;Kim, D.H.;Chae, C.J.;Choi, H.G.;Koo, H.J.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.22 no.2
    • /
    • pp.69-79
    • /
    • 2020
  • In this study, the anti-inflammatory and cytotoxic effects of hot-water extracts from 10 kinds of macroalgae in Korea were investigated. It was selected materials in consideration of biological activity and industrial potential as follows: Caulerpa okamurae; Codium fragile; Ulva australis; Ishige foliacea; Saccharina japonica; Sargassum horneri; Undaria pinnatifida; Gloiopeltis tenax; Gracilaria verrucosa; Porphyra tenera. Results showed that S. japonica and G. tenax significantly decreased NO productionn in LPS-stimulated Raw 264.7 cells at concentrations of 100, 1000 ㎍/mL and 1000 ㎍/mL, respectively. However, most of the other macroalgae used in the experiment did not affect NO production. It was observed that all macroalgae extracts except for the highest concentration (1000 ㎍/mL) treatment group of P. tenera did not affect the viability in Raw 264.7 cells. In addition, there was not significant decrease in cell viability by macroalgae extracts treatment in HINAE cells. These results suggest that S. japonica and G. tenax could be used as potential safe natural anti-inflammatory agents for food and feed additives. Also, the results of this study are expected to be used as basic data for the development of functional materials for 10 kinds of macroalgae resources in Korea.

Macrophage and Anticancer Activities of Feed Additives on β-Glucan from Schizophyllum commune in Breast Cancer Cells (치마버섯균 유래의 베타글루칸에 대한 사료첨가제로서의 대식세포 기능 활성 및 유방암 세포주에서의 항암효능 효과)

  • Lee, Jin-Seok;Lee, Seung-Ho;Jang, Yong-Man;Lee, Jong-Dae;Lee, Byoung-Hee;Jung, Ji-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.949-955
    • /
    • 2011
  • [ ${\beta}$ ]Glucan is a polysaccharide expressed on the cell walls of fungi. It is known that ${\beta}$-glucan is recognized by a family of C-type lectin receptors, dectin-1, which is expressed mainly on myeloid immune cells, including macrophages, neutrophils and dendritic cells. Raw 264.7 cells were treated with ${\beta}$-glucan from Schizophyllum commune. ${\beta}$-Glucan was not cytotoxic up to 400 ${\mu}g$/mL as measured by MTT assay. To measure the activity of macrophages, NO and TNF-${\alpha}$ assays were performed in Raw 264.7 cells. Treatment with ${\beta}$-glucan for 24 hr significantly increased production of NO and TNF-${\alpha}$ compared with control groups (p<0.05), indicating activation of macrophages. To measure inhibition of breast cancer cell proliferation, MTT assay was performed in MDA-MB-231 cells. Cell viability was significantly decreased in the group treated with 400 ${\mu}g$/mL of ${\beta}$-glucan for 48 hr (p<0.05) compared to the control group. However, tumor volume was decreased in the groups administered 200 ${\mu}g$ of ${\beta}$-glucan/mouse compared to the control group. These results indicate that ${\beta}$-glucan inhibits breast cancer cell growth through the induction of apoptosis.

Physico-chemical, Nutritional, and Enzymatic Characteristics of Shiitake Spent Mushroom Substrate (SMS) (표고버섯 수확 후 배지의 이화학적, 영양적, 효소적 특성)

  • Sung, Hwa-Jung;Pyo, Su-Jin;Kim, Jong-Sik;Park, Jong-Yi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1339-1346
    • /
    • 2018
  • In Korea, edible mushrooms are produced largely on commercial artificial media, so the annual production of spent mushroom substrate (SMS), as a by-product of the mushroom industry, is estimated at over 200 million tons. This SMS is assumed to contain abundant fungal mycelia and pre-fruiting bodies, as well as various nutritive and bioactive compounds that are presently discarded. This study examined the physico-chemical, nutritional, and enzymatic characteristics of uninoculated sterilized medium (USM) and SMS of shiitake mushrooms with the aim of developing a high-value added product from SMS. The contents of crude protein, crude lipid, and ash were higher after the third SMS harvest ($SMS-A-3^{rd}$) than in USM or $SMS-A-1^{st}$. The contents of Ca, Mg, and P in $SMS-A-3^{rd}$ were 2.95, 2.35, and 2.1-fold higher compared than in USM. No As or Cd was detected in USM or SMS. The pH, Brix, and acidity were 4.6, 20.0, and 1.4, respectively in $SMS-A-3^{rd}$, but 5.6, 6.0, and 0.0, respectively, in USM. These results suggest a highly active production of soluble components and organic acids in $SMS-A-3^{rd}$. The distinct color differences noted for USM, $SMS-A-1^{st}$, and $SMS-A-3^{rd}$ could be used as a mycelial growth indicator. Enzyme activity assays using the APIZYM system showed that SMS is a potent source of hydrolysis-related enzymes, especially esterase (C4) and ${\beta}$-glucuronidase. Our results suggested that the SMS of shiitake has a high potential for use in environmental, agricultural, and stock-breeding industries, for example, as active ingredients for sewage treatment, waste-polymer degradation, and feed additives.

Degradation of Poultry Feathers by Bacillus amyloliquefaciens Y10 With Plant Growth-promoting Activity and Biological Activity of Feather Hydrolyzates (식물 성장 촉진 활성을 가진 Bacillus amyloliquefaciens Y10에 의한 가금 우모의 분해 및 생산된 우모 분해산물의 생리활성)

  • Yedam Kim;Young Seok Lee;Youngsuk Kim;Jinmyeong Song;Yeongbeen Bak;Gyulim Park;O-Mi Lee;Hong-Joo Son
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.304-312
    • /
    • 2024
  • This study was conducted to characterize strain Y10, isolated from discarded chicken feathers. Strain Y10 was identified as Bacillus amyloliquefaciens through phenotypic and 16S rRNA gene analysis. B. amyloliquefaciens Y10 exhibited plant growth-promoting activities, including the production of fungal cell-degrading enzymes (cellulase, lipase, protease, and pectinase), siderophores, ammonia, and indoleacetic acid. Furthermore, strain Y10 was able to inhibit the mycelial growth of several phytopathogenic fungi. When 0.1% sucrose as a carbon source and 0.05% casein as a nitrogen source were added to the basal medium, adjusted to pH 10, and cultured at 35℃, the degradation rate of chicken feathers by strain Y10 was about two times higher than that of the basal medium, with the feathers almost completely degraded in four days. Strain Y10 also degraded various keratin substrates, including duck feathers, wool, and human nails. It was confirmed that the feather hydrolyzates prepared using strain Y10 exhibited antioxidant activities, such as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity (EC50 = 0.38 mg/ml) and superoxide dismutase-like activity (EC50 = 183.7 mg/ml). These results suggest that B. amyloliquefaciens Y10 is a potential candidate for the development of bioinoculants and feed additives applicable to the agricultural and livestock industries, as well as the microbiological treatment of keratin waste.