Browse > Article
http://dx.doi.org/10.5658/WOOD.2020.48.4.527

Antibacterial Activity of Essential Oils from Pinaceae Leaves Against Fish Pathogens  

HAM, Youngseok (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)
YANG, Jiyoon (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)
CHOI, Won-Sil (National Instrumentation Center for Environmental Management, Seoul National University)
AHN, Byoung-Jun (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)
PARK, Mi-Jin (Division of Wood Chemistry, Department of Forest Products, National Institute of Forest Science)
Publication Information
Journal of the Korean Wood Science and Technology / v.48, no.4, 2020 , pp. 527-547 More about this Journal
Abstract
Fish pathogens cause not only economic damages to fish farming but also infectious pathogens known as a zoonotic agent. Since the continued use of antibiotics to control fish pathogens entails side effects, materials of natural origin need to be developed. The purpose of this study is to discover coniferous essential oils with excellent antibacterial effects in order to develop antibiotic alternatives. We have extracted essential oils using hydro-distillation from the leaves of Abies holophylla, Pinus thunbergii, Pinus parviflora, Tsuga sieboldii, and Pinus rigitaeda, which are all Pinaceae family. And, we have evaluated antibacterial activity with the extracted essential oils against Edwardsiella tarda, Photobacterium damselae, Streptococcus parauberis, and Lactococcus garvieae, which are fish pathogens. As a result, the essential oils from A. holophylla and P. thunbergii showed the selectively strong antibacterial activity against E. tarda and P. damselae, which are gram-negative bacteria. From GC-MS analysis, it was identified that main component of A. holophylla essential oils are (-)-bornyl acetate (29.45%), D-limonene (20.47%), and camphene (11.73%), and that of P. thunbergii essential oils is α-pinene (59.81%). In addition, we found three compounds: neryl acetate, (-)-borneol, and (-)-carveol, which are oxygenated monoterpenes. These exist in a very small amount but exhibit the same efficacy as essential oil. Therefore, we expect that A. holophylla and P. thunbergii essential oils having excellent growth inhibitory effect against gram-negative fish pathogens can be used as biological products such as feed additives and fishery products.
Keywords
Pinaceae; essential oil; antibacterial activity; fish pathogen; neryl acetate; (-)-borneol; (-)-carveol;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Bouazama, S., Hicham, H., Costa, J., Desjobert, J.M., Talbaoui, A., Tabyaoui, M. 2017. Chemical composition and antibacterial activity of the essential oils of Lavandula pedunculata and Lavandula dentata. Journal of Materials and Environmental Sciences 8: 2154-2160.
2 Bouyahya, A., Bakri, Y., Et-Touys, A., Talbaoui, A., Khouchlaa, A., Charfi, S., Abrini, J., Dakka, N. 2017. Resistance to antibiotics and mechanisms of action of essential oils against bacteria. Phytotherapie. DOI 10.1007/s10298-017-1118-z.
3 Bulfon, C., Volpatti, D., Galeotti, M. 2013. Current research on the use of plant-derived products in farmed fish. Aquaculture Research 46(3): 513-551.   DOI
4 Cabello, F. 2006. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environmental Microbiology 8(7): 1137-1144.   DOI
5 Cha, J.D. 2007. Chemical composition and antibacterial activity against oral bacteria by the essential oil of Artemisia iwayomogi. Journal of Bacteriology and Virology 37(3): 129-136.   DOI
6 Cho, M.Y., Kim, M.S., Kwon, M.G., Jee, B .Y., Choi, H.S., Choi, D.L., Park, G.H., Lee, C.H., Kim, J.D., Lee, J.S., Oh, Y.K., Lee, D.C., Park, S.H., Park, M.A. 2007. Epidemiological study of bacterial diseases of cultured olive flounder, Paralichthys olivaceus from 2005 to 2006 in korea. Journal of Aquaculture 20(1): 61-70.
7 Choksi, T.T., Dadani, F. 2017. Reviewing the emergence of Lactococcus garvieae: A case of catheter associated urinary tract infection caused by Lactococcus garvieae and Escherichia coli coinfection. Case Reports in Infectious Diseases 2017: 1-4.   DOI
8 Chouhan, S., Sharma, K., Guleria, S. 2017. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines 4(3): 58-79.   DOI
9 Cunha, J., Heinzmann, B., Baldisserotto, B. 2018. The effects of essential oils and their major compounds on fish bacterial pathogens-a review. Journal of Applied Microbiology 125(2): 328-344.   DOI
10 D’agostino, M., Tesse, N., Frippiat, J.P., Machouart, M., Debourgogne, A. 2019. Essential oils and their natural active compounds presenting antifungal properties. Molecules 24(20): 3713-3734.   DOI
11 Diao, W.R., Zhang, L.L., Feng, S.S., Xu, J.G. 2014. Chemical composition, antibacterial activity, and mechanism of action of the essential oil from Amomum kravanh. Journal of Food Protection 77(10): 1740-1746.   DOI
12 Djabou, N., Lorenzi, V., Guinoiseau, E., Andreani, S., Giuliani, M.C., Desjobert, J.M., Bolla, J.M., Costa, J., Berti, L., Luciani, A., Muselli, A. 2013. Phytochemical composition of Corsican teucrium essential oils and antibacterial activity against foodborne or toxi-infectious pathogens. Food Control 30(1): 354-363.   DOI
13 Erfanmanesh, A., Soltani, M., Pirali, E., Mohammadian, S., Taherimirghaed, A. 2012. Genetic characterization of Streptococcus iniae in diseased farmed rainbow trout (Onchorhynchus mykiss) in iran. The Scientific World Journal 7: 1-6.
14 Grenni, P., Ancona V., Barra Caracciolo, A. 2017. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal 136: 25-39.   DOI
15 Guimaraes, A.C., Meireles, L.M., Lemos, M.F., Guimaraes, M.C.C., Endringer, D.C., Fronza, M., Scherer, R. 2019. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules 24(13): 2471-2483.   DOI
16 Ham, Y., Kim, T.J. 2019. Conditions for preparing Glycyrrhiza uralensis extract for inhibiting biofilm formation of Streptococcus mutans. Journal of the Korean Wood Science and Technology 47(2): 178-188.   DOI
17 Hong, E.J., Na, K.J., Choi, I.G., Choi, K.C., Jeung, E.B. 2004. Antibacterial and antifungal effects of essential oils from coniferous trees. Biological and Pharmaceutical Bulletin 27(6): 863-866.   DOI
18 Hammerschmidt, F., Clark, A., Soliman, F., el-Kashoury, E.S.A., el-Kawy, M., el-Fishawy, A. 1993. Chemical composition and antimicrobial activity of essential oils of jasonia candicans and J. Montana. Planta medica 59(1): 68-70.   DOI
19 Han, H.J., Kim, D.H., Lee, D.C., Kim, S.M., Park, S.I. 2006. Pathogenicity of edwardsiella tarda to olive flounder, Paralichthys olivaceus (Temminck & Schlegel). Journal of Fish Diseases 29(10): 601-609.   DOI
20 Hirai, Y., Asahata-Tago, S., Ainoda, Y., Fujita, T., Kikuchi, K. 2015. Edwardsiella tarda bacteremia. A rare but fatal water- and foodborne infection: Review of the literature and clinical cases from a single centre. The Canadian Journal of Infectious Diseases and Medical Microbiology 26(6): 313-318.   DOI
21 Hundenborn, J., Thurig, S., Kommerell, M., Haag, H., Nolte, O. 2013. Severe wound infection with Photobacterium damselae ssp. damselae and Vibrio harveyi, following a laceration injury in marine environment: A case report and review of the literature. Case Reports in Medicine 2013(5): 610-632.
22 Hussain, A., Anwar, F., Shahid, M., Basra, S., Przybylski, R. 2010. Chemical composition, and antioxidant and antimicrobial activities of essential oil of spearmint (Mentha spicata L.) from Pakistan. The Journal of Essential Oil Research 22(1): 78-84.   DOI
23 Hyldgaard, M., Mygind, T., Meyer, R.L. 2012. Essential oils in food preservation: Mode of action, synergies, and interactions with food matrix components. Frontiers in Microbiology 3(12): 1-24.
24 Kim, H.S., Lee, B.S., Yun, K.W. 2013. Comparison of chemical composition and antimicrobial activity of essential oils from three pinus species. Industrial Crops and Products 44: 323-329.   DOI
25 Jee, B.Y., Shin, K.W., Lee, D.W., Kim, Y.J., Lee, M.K. 2014. Monitoring of the mortalities and medications in the inland farms of olive flounder, Paralichthys olivaceus, in south korea. Journal of Fish Pathology 27(1): 77-84.   DOI
26 Jeong, M.J., Yang, J., Choi, W.S., Kim, J.W., Kim, S.J., Park, M.J. 2017. Chemical compositions and antioxidant activities of essential oil extracted from Neolitsea aciculata (Blume) Koidz leaves. Journal of the Korean Wood Science and Technology 45(1): 96-106.   DOI
27 Jung, E.K. 2009. Chemical composition and antimicrobial activity of the essential oil of Chrysanthemum indicum against oral bacteria. Journal of Bacteriology and Virology 39(2): 61-69.   DOI
28 Kim, S.H., Lee, S.Y., Cho, S.M., Hong, C.Y., Park, M.J., Choi, I.G. 2016. Evaluation on anti-fungal activity and synergy effects of essential oil and their constituents from Abies holophylla. Journal of the Korean Wood Science and Technology 44(1): 113-123.   DOI
29 Kim, S.M., Jun, L.J., Park, M.A., Jung, S.H., Jeong, H.D., Jeong, J.B. 2015. Monitoring of emaciation disease in cultured olive flounder Paralichthys olivaceus in Jeju (2010-2013), korea. Korean Journal of Fisheries and Aquatic Sciences 48(5): 719-724.   DOI
30 Knobloch, K., Pauli, A., Iberl, B., Weigand, H., Weis, N. 1989. Antibacterial and antifungal properties of essential oil components. Journal of Essential Oil Research 1(3): 119-128.   DOI
31 Kotan, R., Kordali, S., Cakir, A. 2007. Screening of antibacterial activities of twenty-one oxygenated monoterpenes. Zeitschrift fur Naturforschung. C, Journal of Biosciences 62(7-8): 507-513.
32 Lee, S.Y., Kim, S.H., Park, M.J., Lee, S.S., Choi, I.G. 2014. Antibacterial activity of essential oil from Abies holophylla against respiratory tract bacteria. Journal of the Korean Wood Science and Technology 42(5): 533-542.   DOI
33 Koukos, P.K., Papadopoulou, K.I., Patiaka, D.T., Papagiannopoulos, A.D. 2000. Chemical composition of essential oils from needles and twigs of balkan pine (Pinus peuce Grisebach) grown in Northern Greece. Journal of Agricultural and Food Chemistry 48(4): 1266-1268.   DOI
34 Lambert, R.J., Skandamis, P.N., Coote, P.J., Nychas, G.J. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. Journal of Applied Microbiology 91(3): 453-462.   DOI
35 Lee, J.H., Hong, S.K. 2009. Comparative analysis of chemical compositions and antimicrobial activities of essential oils from Abies holophylla and Abies koreana. Journal of Microbiology and Biotechnology 19(4): 372-377.   DOI
36 Li, W.R., Shi, Q.S., Liang, Q., Xie, X.B., Huang, X.M., Chen, Y.B. 2014. Antibacterial activity and kinetics of Litsea cubeba oil on Escherichia coli. PLoS ONE 9(11): e110983.   DOI
37 Li, Z.H., Cai, M., Liu, Y.S., Sun, P.L., Luo, S.L. 2019. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis. Molecules 24(8): 1577-1587.   DOI
38 Lingan, K. 2018. A review on major constituents of various essential oils and its application. Translational Medicine 8(1). DOI: 10.4172/2161-1025.1000201.
39 Lopez-Romero, J.C., Gonzalez-Rios, H., Borges, A., Simoes, M. 2015. Antibacterial effects and mode of action of selected essential oils components against Escherichia coli and Staphylococcus aureus. Evidence-based Complementary and Alternative Medicine : eCAM 2015: 1-9.
40 Mann, C.M., Cox, S.D., Markham, J.L. 2000. The outer membrane of Pseudomonas aeruginosa NCTC 6749 contributes to its tolerance to the essential oil of Melaleuca alternifolia (tea tree oil). Letters in Applied Microbiology 30(4): 294-297.   DOI
41 Markestad, A., Grave, K. 1997. Reduction of antibacterial drug use in norwegian fish farming due to vaccination. Developments in Biological Standardization 90: 365-369.
42 Martucci, J.F., Gende, L., Neira, L., Ruseckaite, R. 2015. Oregano and lavender essential oils as antioxidant and antimicrobial additives of biogenic gelatin films. Industrial Crops and Products 71: 205-213.   DOI
43 Min, H.J., Kim, C.S., Hyun, H.J., Bae, Y.S. 2017. Essential oil analysis of Illicium anistum L. extracts. Journal of the Korean Wood Science and Technology 45(6): 682-688.   DOI
44 Mohammed, H., Hamamouchi, J., Zouhdi, M., Bessiere, J.M. 2001. Chemical and antimicrobial properties of essential oils of five moroccan pinaceae. Journal of Essential Oil Research 13(4): 298-302.   DOI
45 Moon, J.S., Kim, J.Y., Joh, S.J., Kim, M.J., Son, S.W., Jang, H. 2009. Influence on efficacy of ${\beta}$-hemolytic Streptococcus iniae vaccine by mixed infections with Edwardsiella tarda and Neoheterobothrium hirame in cultured olive flounder, Paralichthys olivaceus. Journal of Veterinary Clinics 26(3): 226-230.
46 Nazzaro, F., Fratianni, F., Coppola, R., Feo, V. 2017. Essential oils and antifungal activity. Pharmaceuticals (Basel) 10(4): 86-106.   DOI
47 Nazzaro, F., Fratianni, F., De Martino, L., Coppola, R., De Feo, V. 2013. Effect of essential oils on pathogenic bacteria. Pharmaceuticals (Basel) 6(12): 1451-1474.   DOI
48 Oh, M.J., Jung, S.J., Kitamura, S.I., Kim, H.Y., Kang, S.Y. 2006. Viral diseases of olive flounder in korean hatcheries. Journal of Ocean University of China 5(1): 45-48.   DOI
49 Nho, S.W., Shin, G.W., Park, S.B., Jang, H.B., Cha, I.S., Ha, M.A., Kim, Y.R., Park, Y.K., Dalvi, R., Kang, B.J., Joh, S.J., Jung, T.S. 2009. Phenotypic characteristics of Streptococcus iniae and Streptococcus parauberis isolated from olive flounder (Paralichthys olivaceus). FEMS Microbiology Letters 293(1): 20-27.   DOI
50 Nikaido, H. 1994. Prevention of drug access to bacterial targets: Permeability barriers and active efflux. Science 264(5157): 382-388.   DOI
51 Park, J.W., Wendt, M., Heo, G.J. 2016. Antimicrobial activity of essential oil of Eucalyptus globulus against fish pathogenic bacteria. Laboratory Animal Research 32(2): 87-90.   DOI
52 Plesiat, P., Nikaido, H. 1992. Outer membranes of gram-negative bacteria are permeable to steroid probes. Molecular Microbiology 6(10): 1323-1333.   DOI
53 Raeisi, M., Tajik, H., Yarahmadi, A., Sanginabadi, S. 2015. Antimicrobial effect of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Health Scope 4(4): e21808.
54 Rhodes, G., Huys, G., Swings, J., Mc Gann, P., Hiney, M., Smith, P., Pickup, R. 2000. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: Implication of tn1721 in dissemination of the tetracycline resistance determinant tet A. Applied and Environmental Microbiology 66(9): 3883-3890.   DOI
55 Rossiter, S., Fletcher, M., Wuest, W. 2017. Natural products as platforms to overcome antibiotic resistance. Chemical Reviews 117(19): 12415-12474.   DOI
56 Tiwari, B.K., Valdramidis, V.P., O'Donnell, C.P., Muthukumarappan, K., Bourke, P., Cullen, P.J. 2009. Application of natural antimicrobials for food preservation. Journal of Agricultural and Food Chemistry 57(14): 5987-6000.   DOI
57 Salgado-Garciglia, R., Lopez-Meza, J., Torres-Martinez, R., Ochoa-Zarzosa, A., Saavedra-Molina, A., Garcia-Rodriguez, Y., Rios-Chavez, P. 2018. Antioxidant activity of the essential oil and its major terpenes of Satureja macrostema (moc. And sesse ex benth.) briq. Pharmacognosy Magazine 13(4): 875-880.
58 Sutili, F., Murari, A.L., Silva, L.L., Gressler, L., Heinzmann, B., Vargas, A., Schmidt, D., Baldisserotto, B. 2016. The use of Ocimum americanum essential oil against the pathogens Aeromonas hydrophila and Gyrodactylus sp. in silver catfish (Rhamdia quelen). Letters in Applied Microbiology 63(2): 82-88.   DOI
59 Tabanca, N., Kirimer, N., Demirci, B., Demirci, F., Baser, K.H. 2001. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. Journal of Agricultural and Food Chemistry 49(9): 4300-4303.   DOI
60 Tongnuanchan, P., Benjakul, S. 2014. Essential oils: Extraction, bioactivities, and their uses for food preservation. Journal of Food Science 79(7): 1231-1249.
61 Tripathi, A., Upadhyay, S., Bhuyan, M., Bhattacharya, P. 2009. A review on prospects of essential oils as biopesticide in insect-pest management. Journal of Pharmacognosy and Phytotherapy 1(5): 052-063.
62 Yan, L., Kim, I.H. 2013. Effects of dietary supplementation of fermented garlic powder on growth performance, apparent total tract digestibility, blood characteristics and faecal microbial concentration in weanling pigs. Journal of Animal Physiology and Animal Nutrition 97(3): 457-464.   DOI
63 Trombetta, D., Castelli, F., Sarpietro, M.G., Venuti, V., Cristani, M., Daniele, C., Saija, A., Mazzanti, G., Bisignano, G. 2005. Mechanisms of antibacterial action of three monoterpenes. Antimicrobial Agents and Chemotherapy 49(6): 2474-2478.   DOI
64 Vaara, M. 1992. Agents that increase the permeability of the outer membrane. Microbiol Reviews 56(3): 395-411.   DOI
65 Xie, Q., Liu, Z., Li, Z. 2015. Chemical composition and antioxidant activity of essential oil of six pinus taxa native to china. Molecules 20(5): 9380-9392.   DOI
66 Yang, J., Choi, W.S., Kim, J.W., Lee, S.S., Park, M.J. 2019. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species Journal of the Korean Wood Science and Technology 47(6): 674-691.   DOI
67 Yang, X.N., Khan, I., Kang, S.C. 2015. Chemical composition, mechanism of antibacterial action and antioxidant activity of leaf essential oil of Forsythia koreana deciduous shrub. Asian Pacific Journal of Tropical Medicine 8(9): 694-700.   DOI
68 Amorati, R., Foti, M.C., Valgimigli, L. 2013. Antioxidant activity of essential oils. Journal of Agricultural and Food Chemistry 61(46): 10835- 10847.   DOI
69 Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A., Anwar, F. 2015. Essential oils used in aromatherapy: A systemic review. Asian Pacific Journal of Tropical Biomedicine 5(8): 601-611.   DOI
70 Ahn, C., Park, M.J., Kim, J.W., Yang, J., Lee, S.S., Jeung, E.B. 2018. Cytotoxic evaluation of plant essential oils in human skin and lung cells. Journal of the Korean Wood Science and Technology 46(2): 166-177.   DOI
71 Aumeeruddy Elalfi, Z., Gurib-Fakim, A., Mahomoodally, F. 2015. Antimicrobial, antibiotic potentiating activity and phytochemical profile of essential oils from exotic and endemic medicinal plants of mauritius. Industrial Crops and Products 71: 197-204.   DOI
72 Ayvaz, A., Sagdic, O., Karaborklu, S., Ozturk, I. 2010. Insecticidal activity of the essential oils from different plants against three stored-product insects. Journal of Insect Science 10(1): 21-32.
73 Aziz, Z.A.A., Ahmad, A., Setapar, S.H.M., Karakucuk, A., Azim, M.M., Lokhat, D., Rafatullah, M., Ganash, M., Kamal, M.A., Ashraf, G.M. 2018. Essential oils: Extraction techniques, pharmaceutical and therapeutic potential - a review. Current Drug Metabolism 19(13): 1100-1110.   DOI
74 Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. 2008. Biological effects of essential oils: A review. Food and Chemical Toxicology 46(2): 446-475.   DOI
75 Bock, A., Sawers, G. 1996. Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edition. Fermentation, pp. 262-282.