DOI QR코드

DOI QR Code

Butyric acid and prospects for creation of new medicines based on its derivatives: a literature review

  • Lyudmila K. Gerunova (Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin) ;
  • Taras V. Gerunov (Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin) ;
  • Lydia G. P'yanova (Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC) ;
  • Alexander V. Lavrenov (Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC) ;
  • Anna V. Sedanova (Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC) ;
  • Maria S. Delyagina (Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC) ;
  • Yuri N. Fedorov (Laboratory of Immunology, All-Russian Research and Technological Institute of Biological Industry) ;
  • Natalia V. Kornienko (Department of Materials Science and Physicochemical Research Methods, Center of New Chemical Technologies BIC) ;
  • Yana O. Kryuchek (Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin) ;
  • Anna A. Tarasenko (Department of Pharmacology and Toxicology, Omsk State Agrarian University named after P. A. Stolypin)
  • Received : 2023.09.15
  • Accepted : 2024.01.22
  • Published : 2024.03.31

Abstract

The widespread use of antimicrobials causes antibiotic resistance in bacteria. The use of butyric acid and its derivatives is an alternative tactic. This review summarizes the literature on the role of butyric acid in the body and provides further prospects for the clinical use of its derivatives and delivery methods to the animal body. Thus far, there is evidence confirming the vital role of butyric acid in the body and the effectiveness of its derivatives when used as animal medicines and growth stimulants. Butyric acid salts stimulate immunomodulatory activity by reducing microbial colonization of the intestine and suppressing inflammation. Extraintestinal effects occur against the background of hemoglobinopathy, hypercholesterolemia, insulin resistance, and cerebral ischemia. Butyric acid derivatives inhibit histone deacetylase. Aberrant histone deacetylase activity is associated with the development of certain types of cancer in humans. Feed additives containing butyric acid salts or tributyrin are used widely in animal husbandry. They improve the functional status of the intestine and accelerate animal growth and development. On the other hand, high concentrations of butyric acid stimulate the apoptosis of epithelial cells and disrupt the intestinal barrier function. This review highlights the biological activity and the mechanism of action of butyric acid, its salts, and esters, revealing their role in the treatment of various animal and human diseases. This paper also discussed the possibility of using butyric acid and its derivatives as surface modifiers of enterosorbents to obtain new drugs with bifunctional action.

Keywords

Acknowledgement

The authors are very grateful to the editors and reviewers for their valuable comments and recommendations on the article.

References

  1. Alders RG, Campbell A, Costa R, Gueye EF, Ahasanul Hoque M, Perezgrovas-Garza R, et al. Livestock across the world: diverse animal species with complex roles in human societies and ecosystem services. Anim Front. 2021;11(5):20-29.
  2. Komarek AM, Dunston S, Enahoro D, Godfray HC, Herrero M, Mason-D'Croz D, et al. Income, consumer preferences, and the future of livestock-derived food demand. Glob Environ Change. 2021;70:102343.
  3. Lebelo K, Malebo N, Mochane MJ, Masinde M. Chemical contamination pathways and the food safety implications along the various stages of food production: a review. Int J Environ Res Public Health. 2021;18(11):5795.
  4. Patel T, Marmulak T, Gehring R, Pitesky M, Clapham MO, Tell LA. Drug residues in poultry meat: a literature review of commonly used veterinary antibacterials and anthelmintics used in poultry. J Vet Pharmacol Ther. 2018;41(6):761-789. https://doi.org/10.1111/jvp.12700
  5. Yamaguchi T, Okihashi M, Harada K, Konishi Y, Uchida K, Do MH, et al. Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012-2013. J Agric Food Chem. 2015;63(21):5141-5145. https://doi.org/10.1021/jf505254y
  6. Becker-Algeri TA, Castagnaro D, de Bortoli K, de Souza C, Drunkler DA, Badiale-Furlong E. Mycotoxins in bovine milk and dairy products: a review. J Food Sci. 2016;81(3):R544-R552.
  7. Canton L, Lanusse C, Moreno L. Rational pharmacotherapy in infectious diseases: issues related to drug residues in edible animal tissues. Animals (Basel). 2021;11(10):2878.
  8. Ng CA, von Goetz N. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect. 2017;125(1):1-7. https://doi.org/10.1289/EHP168
  9. Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A. Antimicrobial drug use in foodproducing animals and associated human health risks: what, and how strong, is the evidence? BMC Vet Res. 2017;13(1):211.
  10. Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health. 2021;3(1):32-38. https://doi.org/10.1016/j.bsheal.2020.09.004
  11. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718-733. https://doi.org/10.1128/CMR.00002-11
  12. Pokharel S, Shrestha P, Adhikari B. Antimicrobial use in food animals and human health: time to implement 'One Health' approach. Antimicrob Resist Infect Control. 2020;9(1):181.
  13. Sazykin IS, Khmelevtsova LE, Seliverstova EY, Sazykina MA. Effect of antibiotics used in animal husbandry on the distribution of bacterial drug resistance. Appl Biochem Microbiol. 2021;57(1):20-30. https://doi.org/10.1134/S0003683821010166
  14. Waluszewski A, Cinti A, Perna A. Antibiotics in pig meat production: restrictions as the odd case and overuse as normality? Experiences from Sweden and Italy. Humanit Soc Sci Commun. 2021;8(1):172.
  15. Bedford A, Gong J. Implications of butyrate and its derivatives for gut health and animal production. Anim Nutr. 2018;4(2):151-159. https://doi.org/10.1016/j.aninu.2017.08.010
  16. Gomez-Osorio LM, Yepes-Medina V, Ballou A, Parini M, Angel R. Short and medium chain fatty acids and their derivatives as a natural strategy in the control of necrotic enteritis and microbial homeostasis in broiler chickens. Front Vet Sci. 2021;8:773372. 
  17. Jiang L, Fu H, Yang HK, Xu W, Wang J, Yang ST. Butyric acid: applications and recent advances in its bioproduction. Biotechnol Adv. 2018;36(8):2101-2117. https://doi.org/10.1016/j.biotechadv.2018.09.005
  18. Yang Q, Chen B, Robinson K, Belem T, Lyu W, Deng Z, et al. Butyrate in combination with forskolin alleviates necrotic enteritis, increases feed efficiency, and improves carcass composition of broilers. J Anim Sci Biotechnol. 2022;13(1):3.
  19. Gorka P, Kowalski ZM, Zabielski R, Guilloteau P. Invited review: Use of butyrate to promote gastrointestinal tract development in calves. J Dairy Sci. 2018;101(6):4785-4800. https://doi.org/10.3168/jds.2017-14086
  20. Niwinska B, Hanczakowska E, Arciszewski MB, Klebaniuk R. Review: Exogenous butyrate: implications for the functional development of ruminal epithelium and calf performance. Animal. 2017;11(9):1522-1530. https://doi.org/10.1017/S1751731117000167
  21. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27(2):104-119. https://doi.org/10.1111/j.1365-2036.2007.03562.x
  22. Banasiewicz T, Domagalska D, Borycka-Kiciak K, Rydzewska G. Determination of butyric acid dosage based on clinical and experimental studies - a literature review. Prz Gastroenterol. 2020;15(2):119-125.
  23. Gerunov TV, Drozdetskaya MS, Gerunova LK, P'yanova LG. Enterosorbents in veterinary: significance and prospects of new medicinal products for animal use. Innov Food Saf. 2017;3:17-24. 
  24. Gothals L, Gorbakova A. Stimulyatory rosta na osnove maslyanoj kisloty dlya svinovodstva. Kombikorma. 2015;9:92-95. 
  25. Luo H, Yang R, Zhao Y, Wang Z, Liu Z, Huang M, et al. Recent advances and strategies in process and strain engineering for the production of butyric acid by microbial fermentation. Bioresour Technol. 2018;253:343-354. https://doi.org/10.1016/j.biortech.2018.01.007
  26. Mirzaei R, Afaghi A, Babakhani S, Sohrabi MR, Hosseini-Fard SR, Babolhavaeji K, et al. Role of microbiota-derived short-chain fatty acids in cancer development and prevention. Biomed Pharmacother. 2021;139:111619.
  27. Hold GL, Schwiertz A, Aminov RI, Blaut M, Flint HJ. Oligonucleotide probes that detect quantitatively significant groups of butyrate-producing bacteria in human feces. Appl Environ Microbiol. 2003;69(7):4320-4324. https://doi.org/10.1128/AEM.69.7.4320-4324.2003
  28. Feng J, Guo X, Cai F, Fu H, Wang J. Model-based driving mechanism analysis for butyric acid production in Clostridium tyrobutyricum. Biotechnol Biofuels Bioprod. 2022;15(1):71.
  29. Fu H, Yue Z, Feng J, Bao T, Yang ST, Cai Y, et al. Consolidated bioprocessing for butyric acid production from raw cassava starch by a newly isolated Clostridium butyricum SCUT620. Ind Crops Prod. 2022;187:115446.
  30. Larsson SC, Wolk A. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int J Cancer. 2006;119(11):2657-2664. https://doi.org/10.1002/ijc.22170
  31. Litvak Y, Byndloss MX, Baumler AJ. Colonocyte metabolism shapes the gut microbiota. Science. 2018;362(6418):eaat9076.
  32. Lee S, Knotts TA, Goodson ML, Barboza M, Wudeck E, England G, et al. Metabolic responses to butyrate supplementation in LF- and HF-fed mice are cohort-dependent and associated with changes in composition and function of the gut microbiota. Nutrients. 2020;12(11):3524.
  33. Salvi PS, Cowles RA. Butyrate and the intestinal epithelium: modulation of proliferation and inflammation in homeostasis and disease. Cells. 2021;10(7):1775.
  34. Boyen F, Haesebrouck F, Vanparys A, Volf J, Mahu M, Van Immerseel F, et al. Coated fatty acids alter virulence properties of Salmonella Typhimurium and decrease intestinal colonization of pigs. Vet Microbiol. 2008;132(3-4):319-327. https://doi.org/10.1016/j.vetmic.2008.05.008
  35. Gurney MA, Laubitz D, Ghishan FK, Kiela PR. Pathophysiology of intestinal Na+/H+ exchange. Cell Mol Gastroenterol Hepatol. 2017;3(1):27-40. https://doi.org/10.1016/j.jcmgh.2016.09.010
  36. Papadopoulos GA, Poutahidis T, Chalvatzi S, Kroustallas F, Karavanis E, Fortomaris P. Effects of a tributyrin and monolaurin blend compared to high ZnO levels on growth performance, faecal microbial counts, intestinal histomorphometry and immunohistochemistry in weaned piglets: a field study in two pig herds. Res Vet Sci. 2022;144:54-65. https://doi.org/10.1016/j.rvsc.2022.01.011
  37. Masmeijer C, Rogge T, van Leenen K, De Cremer L, Deprez P, Cox E, et al. Effects of glycerol-esters of saturated short- and medium chain fatty acids on immune, health and growth variables in veal calves. Prev Vet Med. 2020;178:104983.
  38. Usami M, Kishimoto K, Ohata A, Miyoshi M, Aoyama M, Fueda Y, et al. Butyrate and trichostatin A attenuate nuclear factor kappaB activation and tumor necrosis factor alpha secretion and increase prostaglandin E2 secretion in human peripheral blood mononuclear cells. Nutr Res. 2008;28(5):321-328. https://doi.org/10.1016/j.nutres.2008.02.012
  39. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858-876. https://doi.org/10.3390/nu3100858
  40. Hansen VL, Kahl S, Proszkowiec-Weglarz M, Jimenez SC, Vaessen SF, Schreier LL, et al. The effects of tributyrin supplementation on weight gain and intestinal gene expression in broiler chickens during Eimeria maxima-induced coccidiosis. Poult Sci. 2021;100(4):100984.
  41. Cao Q, Zhang W, Lian T, Wang S, Dong H. Short chain carboxylic acids production and dynamicity of microbial communities from co-digestion of swine manure and corn silage. Bioresour Technol. 2021;320(Pt B):124400.
  42. Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielski R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;23(2):366-384. https://doi.org/10.1017/S0954422410000247
  43. Lum J, Sygall R, Felip JM. Comparison of tributyrin and coated sodium butyrate as sources of butyric acid for improvement of growth performance in Ross 308 broilers. Int J Poult Sci. 2018;17(6):290-294. https://doi.org/10.3923/ijps.2018.290.294
  44. Roda A, Simoni P, Magliulo M, Nanni P, Baraldini M, Roda G, et al. A new oral formulation for the release of sodium butyrate in the ileo-cecal region and colon. World J Gastroenterol. 2007;13(7):1079-1084. https://doi.org/10.3748/wjg.v13.i7.1079
  45. Russo R, Santarcangelo C, Badolati N, Sommella E, De Filippis A, Dacrema M, et al. In vivo bioavailability and in vitro toxicological evaluation of the new butyric acid releaser N-(1-carbamoyl-2-phenyl-ethyl) butyramide. Biomed Pharmacother. 2021;137:111385.
  46. Zhao H, Bai H, Deng F, Zhong R, Liu L, Chen L, et al. Chemically protected sodium butyrate improves growth performance and early development and function of small intestine in broilers as one effective substitute for antibiotics. Antibiotics (Basel). 2022;11(2):132.
  47. Thorsen K, Drengstig T, Ruoff P. Transepithelial glucose transport and Na+/K+ homeostasis in enterocytes: an integrative model. Am J Physiol Cell Physiol. 2014;307(4):C320-C337. https://doi.org/10.1152/ajpcell.00068.2013
  48. Gothals L, Gorbakova A. Sravnitel'naya harakteristiki butiratov. Kombikorma. 2014;5:43-46. 
  49. Sunkara LT, Achanta M, Schreiber NB, Bommineni YR, Dai G, Jiang W, et al. Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One. 2011;6(11):e27225.
  50. Smulikowska S, Czerwinski J, Mieczkowska A, Jankowiak J. The effect of fat-coated organic acid salts and a feed enzyme on growth performance, nutrient utilization, microflora activity, and morphology of the small intestine in broiler chickens. J Anim Feed Sci. 2009;18(3):478-489. https://doi.org/10.22358/jafs/66422/2009
  51. Zhang WH, Jiang Y, Zhu QF, Gao F, Dai SF, Chen J, et al. Sodium butyrate maintains growth performance by regulating the immune response in broiler chickens. Br Poult Sci. 2011;52(3):292-301. https://doi.org/10.1080/00071668.2011.578121
  52. Wachtershauser A, Stein J. Rationale for the luminal provision of butyrate in intestinal diseases. Eur J Nutr. 2000;39(4):164-171. https://doi.org/10.1007/s003940070020
  53. Fernandes TV, Keesman KJ, Zeeman G, van Lier JB. Effect of ammonia on the anaerobic hydrolysis of cellulose and tributyrin. Biomass Bioenergy. 2012;47:316-323. https://doi.org/10.1016/j.biombioe.2012.09.029
  54. Wu HS, Tsai MJ. Kinetics of tributyrin hydrolysis by lipase. Enzyme Microb Technol. 2004;35(6-7):488-493. https://doi.org/10.1016/j.enzmictec.2004.08.002
  55. Kang SN, Lee E, Lee MK, Lim SJ. Preparation and evaluation of tributyrin emulsion as a potent anticancer agent against melanoma. Drug Deliv. 2011;18(2):143-149. https://doi.org/10.3109/10717544.2010.522610
  56. Kovanda L, Zhang W, Wei X, Luo J, Wu X, Atwill ER, et al. In vitro antimicrobial activities of organic acids and their derivatives on several species of gram-negative and gram-positive bacteria. Molecules. 2019;24(20):3770.
  57. Miyoshi M, Sakaki H, Usami M, Iizuka N, Shuno K, Aoyama M, et al. Oral administration of tributyrin increases concentration of butyrate in the portal vein and prevents lipopolysaccharide-induced liver injury in rats. Clin Nutr. 2011;30(2):252-258. https://doi.org/10.1016/j.clnu.2010.09.012
  58. Venkatesan P, Puvvada N, Dash R, Prashanth Kumar BN, Sarkar D, Azab B, et al. The potential of celecoxib-loaded hydroxyapatite-chitosan nanocomposite for the treatment of colon cancer. Biomaterials. 2011;32(15):3794-3806. https://doi.org/10.1016/j.biomaterials.2011.01.027
  59. Leonel AJ, Teixeira LG, Oliveira RP, Santiago AF, Batista NV, Ferreira TR, et al. Antioxidative and immunomodulatory effects of tributyrin supplementation on experimental colitis. Br J Nutr. 2013;109(8):1396-1407. https://doi.org/10.1017/S000711451200342X
  60. Li J, Hou Y, Yi D, Zhang J, Wang L, Qiu H, et al. Effects of tributyrin on intestinal energy status, antioxidative capacity and immune response to lipopolysaccharide challenge in broilers. Asian-Australas J Anim Sci. 2015;28(12):1784-1793.  https://doi.org/10.5713/ajas.15.0286
  61. United Nations. Globally Harmonized System of Classification and Labelling of Chemicals (GHS Rev. 9, 2021) [Internet]. New York: United Nations; 2021. https://unece.org/transport/standards/transport/dangerous-goods/ghs-rev9-2021. Accessed 2023 Sep 13. 
  62. Levanova SV, Krasnykh EL, Moiseeva SV, Safronov SP, Glazko IL. Scientific and technological features of synthesis of new ester plasticizers based on renewable raw materials. ChemChemTech. 2021;64(6):69-75. https://doi.org/10.6060/ivkkt.20216406.6369
  63. Van Immerseel F, Boyen F, Gantois I, Timbermont L, Bohez L, Pasmans F, et al. Supplementation of coated butyric acid in the feed reduces colonization and shedding of Salmonella in poultry. Poult Sci. 2005;84(12):1851-1856. https://doi.org/10.1093/ps/84.12.1851
  64. Leeson S, Namkung H, Antongiovanni M, Lee EH. Effect of butyric acid on the performance and carcass yield of broiler chickens. Poult Sci. 2005;84(9):1418-1422. https://doi.org/10.1093/ps/84.9.1418
  65. Polycarpo GV, Andretta I, Kipper M, Cruz-Polycarpo VC, Dadalt JC, Rodrigues PH, et al. Meta-analytic study of organic acids as an alternative performance-enhancing feed additive to antibiotics for broiler chickens. Poult Sci. 2017;96(10):3645-3653. https://doi.org/10.3382/ps/pex178
  66. Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, et al. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express. 2021;11(1):140.
  67. Ma J, Wang J, Mahfuz S, Long S, Wu D, Gao J, et al. Supplementation of mixed organic acids improves growth performance, meat quality, gut morphology and volatile fatty acids of broiler chicken. Animals (Basel). 2021;11(11):3020.
  68. Kaczmarek SA, Barri A, Hejdysz M, Rutkowski A. Effect of different doses of coated butyric acid on growth performance and energy utilization in broilers. Poult Sci. 2016;95(4):851-859. https://doi.org/10.3382/ps/pev382
  69. Mroz Z, Koopmans SJ, Bannink A, Partanen AK, Krasucki W, Overland M, et al. Carboxylic acids as bioregulators and gut growth promoters in non-ruminants. In: Mosenthin R, Zentek J, Zebrowska T, editors. Biology of Nutrition in Growing Animals. Amsterdam: Elsevier; 2005, 1-79. 
  70. Kien CL, Blauwiekel R, Bunn JY, Jetton TL, Frankel WL, Holst JJ. Cecal infusion of butyrate increases intestinal cell proliferation in piglets. J Nutr. 2007;137(4):916-922. https://doi.org/10.1093/jn/137.4.916
  71. Upadhaya SD, Yang J, Kim YM, Lee KY, Kim IH. Coated sodium butyrate supplementation to a reduced nutrient diet enhanced the performance and positively impacted villus height and faecal and digesta bacterial composition in weaner pigs. Anim Feed Sci Technol. 2020;265:114534.
  72. Walia K, Arguello H, Lynch H, Leonard FC, Grant J, Yearsley D, et al. Effect of feeding sodium butyrate in the late finishing period on Salmonella carriage, seroprevalence, and growth of finishing pigs. Prev Vet Med. 2016;131:79-86. https://doi.org/10.1016/j.prevetmed.2016.07.009
  73. Molyneux DH. Control of human parasitic diseases: context and overview. Adv Parasitol. 2006;61:1-45. https://doi.org/10.1016/S0065-308X(05)61001-9
  74. Gonzalez-Escobedo G, Gunn JS. Gallbladder epithelium as a niche for chronic Salmonella carriage. Infect Immun. 2013;81(8):2920-2930. https://doi.org/10.1128/IAI.00258-13
  75. Gorka P, Kowalski ZM, Pietrzak P, Kotunia A, Jagusiak W, Holst JJ, et al. Effect of method of delivery of sodium butyrate on rumen development in newborn calves. J Dairy Sci. 2011;94(11):5578-5588. https://doi.org/10.3168/jds.2011-4166
  76. Gorka P, Kowalski ZM, Pietrzak P, Kotunia A, Jagusiak W, Zabielski R. Is rumen development in newborn calves affected by different liquid feeds and small intestine development? J Dairy Sci. 2011;94(6):3002-3013. https://doi.org/10.3168/jds.2010-3499
  77. Gorka P, Pietrzak P, Kotunia A, Zabielski R, Kowalski ZM. Effect of method of delivery of sodium butyrate on maturation of the small intestine in newborn calves. J Dairy Sci. 2014;97(2):1026-1035. https://doi.org/10.3168/jds.2013-7251
  78. Simpson JW. Diet and large intestinal disease in dogs and cats. J Nutr. 1998;128(12 Suppl):2717S-2722S. https://doi.org/10.1093/jn/128.12.2717S
  79. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-1517. https://doi.org/10.2337/db08-1637
  80. Kuwajima A, Iwashita J, Murata J, Abe T. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel. Anticancer Res. 2007;27(6B):4163-4169.
  81. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells. J Natl Cancer Inst. 2000;92(15):1210-1216. https://doi.org/10.1093/jnci/92.15.1210
  82. Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005;11(13):4912-4922.  https://doi.org/10.1158/1078-0432.CCR-04-2088
  83. Heerdt BG, Houston MA, Anthony GM, Augenlicht LH. Initiation of growth arrest and apoptosis of MCF-7 mammary carcinoma cells by tributyrin, a triglyceride analogue of the short-chain fatty acid butyrate, is associated with mitochondrial activity. Cancer Res. 1999;59(7):1584-1591.
  84. Su J, Ho PC. Preparation of tributyrin emulsion and characterization of the binding of the emulsion particles to low-density lipoprotein in vitro. J Pharm Sci. 2004;93(7):1755-1765. https://doi.org/10.1002/jps.20092
  85. Kang SN, Hong SS, Lee MK, Lim SJ. Dual function of tributyrin emulsion: solubilization and enhancement of anticancer effect of celecoxib. Int J Pharm. 2012;428(1-2):76-81. https://doi.org/10.1016/j.ijpharm.2012.02.037
  86. Gately S, Li WW. Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol. 2004;31(2 Suppl 7):2-11. https://doi.org/10.1053/j.seminoncol.2004.03.040
  87. Grosch S, Maier TJ, Schiffmann S, Geisslinger G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst. 2006;98(11):736-747. https://doi.org/10.1093/jnci/djj206
  88. Harris RE. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell Biochem. 2007;42:93-126. https://doi.org/10.1007/1-4020-5688-5_4
  89. Khan KN, Masferrer JL, Woerner BM, Soslow R, Koki AT. Enhanced cyclooxygenase-2 expression in sporadic and familial adenomatous polyposis of the human colon. Scand J Gastroenterol. 2001;36(8):865-869.
  90. Thun MJ, Henley SJ, Patrono C. Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 2002;94(4):252-266. https://doi.org/10.1093/jnci/94.4.252
  91. Weisberg E, Catley L, Kujawa J, Atadja P, Remiszewski S, Fuerst P, et al. Histone deacetylase inhibitor NVP-LAQ824 has significant activity against myeloid leukemia cells in vitro and in vivo. Leukemia. 2004;18(12):1951-1963. https://doi.org/10.1038/sj.leu.2403519
  92. Dinarello CA, Fossati G, Mascagni P. Histone deacetylase inhibitors for treating a spectrum of diseases not related to cancer. Mol Med. 2011;17(5-6):333-352. https://doi.org/10.2119/molmed.2011.00116
  93. Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10(1):32-42. https://doi.org/10.1038/nrg2485
  94. Wang J, Zhang H, Bai S, Zeng Q, Su Z, Zhuo Y, et al. Dietary tributyrin improves reproductive performance, antioxidant capacity, and ovary function of broiler breeders. Poult Sci. 2021;100(11):101429.
  95. Kotunia A, Wolinski J, Laubitz D, Jurkowska M, Rome V, Guilloteau P, et al. Effect of sodium butyrate on the small intestine development in neonatal piglets fed [correction of feed] by artificial sow. J Physiol Pharmacol. 2004;55 Suppl 2:59-68.
  96. Proszkowiec-Weglarz M, Miska KB, Schreier LL, Grim CJ, Jarvis KG, Shao J, et al. Research note: effect of butyric acid glycerol esters on ileal and cecal mucosal and luminal microbiota in chickens challenged with Eimeria maxima. Poult Sci. 2020;99(10):5143-5148. https://doi.org/10.1016/j.psj.2020.06.022
  97. Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 2007;61(1):37-41. https://doi.org/10.1203/01.pdr.0000250014.92242.f3
  98. Lee JG, Lee J, Lee AR, Jo SV, Park CH, Han DS, et al. Impact of short-chain fatty acid supplementation on gut inflammation and microbiota composition in a murine colitis model. J Nutr Biochem. 2022;101:108926.
  99. Lin J, Nafday SM, Chauvin SN, Magid MS, Pabbatireddy S, Holzman IR, et al. Variable effects of short chain fatty acids and lactic acid in inducing intestinal mucosal injury in newborn rats. J Pediatr Gastroenterol Nutr. 2002;35(4):545-550.
  100. Ota S, Sakuraba H. Uptake and advanced therapy of butyrate in inflammatory bowel disease. Immuno. 2022;2(4):692-702.
  101. Kazmierczak-Siedlecka K, Marano L, Merola E, Roviello F, Polom K. Sodium butyrate in both prevention and supportive treatment of colorectal cancer. Front Cell Infect Microbiol. 2022;12:1023806.
  102. Andreev DN, Kucheryavyy YA, Maev IV. Efficacy of butyric acid inclusion in eradication regimens for Helicobacter pylori infection: a meta-analysis of controlled trials. Ter Arkh. 2021;93(2):158-163.
  103. Lewandowski K, Kaniewska M, Karlowicz K, Rosolowski M, Rydzewska G. The effectiveness of microencapsulated sodium butyrate at reducing symptoms in patients with irritable bowel syndrome. Prz Gastroenterol. 2022;17(1):28-34.
  104. Pituch A, Walkowiak J, Banaszkiewicz A. Butyric acid in functional constipation. Prz Gastroenterol. 2013;8(5):295-298.
  105. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol. 2011;17(12):1519-1528. https://doi.org/10.3748/wjg.v17.i12.1519
  106. Coppola S, Nocerino R, Paparo L, Bedogni G, Calignano A, Di Scala C, et al. Therapeutic effects of butyrate on pediatric obesity: a randomized clinical trial. JAMA Netw Open. 2022;5(12):e2244912.
  107. Liu H, Wang J, He T, Becker S, Zhang G, Li D, et al. Butyrate: a double-edged sword for health? Adv Nutr. 2018;9(1):21-29. https://doi.org/10.1093/advances/nmx009
  108. de Groot PF, Nikolic T, Imangaliyev S, Bekkering S, Duinkerken G, Keij FM, et al. Oral butyrate does not affect innate immunity and islet autoimmunity in individuals with longstanding type 1 diabetes: a randomised controlled trial. Diabetologia. 2020;63(3):597-610. https://doi.org/10.1007/s00125-019-05073-8
  109. Pietrzak A, Banasiuk M, Szczepanik M, Borys-Iwanicka A, Pytrus T, Walkowiak J, et al. Sodium butyrate effectiveness in children and adolescents with newly diagnosed inflammatory bowel diseases-randomized placebo-controlled multicenter trial. Nutrients. 2022;14(16):3283.
  110. Chemudupati M, Kenney AD, Smith AC, Fillinger RJ, Zhang L, Zani A, et al. Butyrate reprograms expression of specific interferon-stimulated genes. J Virol. 2020;94(16):e00326-20.
  111. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the gut microbiota in patients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 2020;71(10):2669-2678. https://doi.org/10.1093/cid/ciaa709
  112. Paparo L, Maglio MA, Cortese M, Bruno C, Capasso M, Punzo E, et al. A new butyrate releaser exerts a protective action against SARS-CoV-2 infection in human intestine. Molecules. 2022;27(3):862.
  113. Li C, Li Z, Liu T, Gu Z, Ban X, Tang X, et al. Encapsulating tributyrin during enzymatic cyclodextrin synthesis improves the solubility and bioavailability of tributyrin. Food Hydrocoll. 2021;113:106512.
  114. Chen S, Li Z, Gu Z, Hong Y, Cheng L, Li C. Variants at position 603 of the CGTase from Bacillus circulans STB01 for reducing product inhibition. Int J Biol Macromol. 2019;136:460-468. https://doi.org/10.1016/j.ijbiomac.2019.05.160
  115. Wadhwa G, Kumar S, Chhabra L, Mahant S, Rao R. Essential oil-cyclodextrin complexes: an updated review. J Incl Phenom Macrocycl Chem. 2017;89(1-2):39-58. https://doi.org/10.1007/s10847-017-0744-2
  116. Augustin MA, Abeywardena MY, Patten G, Head R, Lockett T, de Luca A, et al. Effects of microencapsulation on the gastrointestinal transit and tissue distribution of a bioactive mixture of fish oil, tributyrin and resveratrol. J Funct Foods. 2011;3(1):25-37. https://doi.org/10.1016/j.jff.2011.01.003
  117. Drozdov VA, P'yanova LG, Lavrenov AV, Likholobov VA, Kudrya EN, Luzyanina LS. State and properties of a carbon sorbent modified with a bioactive substance. Prot Met Phys Chem Surf. 2019;55(6):1035-1043. https://doi.org/10.1134/S2070205119060091
  118. P'yanova LG, Likholobov VA, Sedanova AV, Drozdetskaya MS. Fundamental technological approaches to the synthesis of carbon sorbents for medical and veterinary applications. Russ J Gen Chem. 2020;90(3):550-558. https://doi.org/10.1134/S1070363220030305
  119. Lavrenov AV, P'yanova LG, Leont'eva NN, Sedanova AV, Delyagina MS, Trenikhin MV. Physicochemical approach for the modification of medical nanoporous carbon sorbents. Adsorption. 2023;29(5-6):309-321. https://doi.org/10.1007/s10450-023-00378-y
  120. Dorozhkin VI, Fedorov YN, Gerunova LK, P'yanova LG, Gerunov TV, Delyagina MS, et al. Therapeutic efficiency of sorbents modified by hydroxic acids during animal experimental poisoning with ivermectin. Sh Biol. 2020;55(2):394-405.
  121. Sedanova AV, P'yanova LG, Delyagina MS, Kornienko NV, Ogurtsova DN, Leont'eva NN. Modification of porous carbon sorbent with tributyrin. Chem for Sust Develop. 2022;30(5):522-531. https://doi.org/10.15372/CSD2022412