• 제목/요약/키워드: Biological design

검색결과 1,368건 처리시간 0.03초

정신과 연구에서 다양한 임상연구방법의 장단점 (Pros and Cons of Various Research Designs in Clinical Psychiatry)

  • 하라연;조현상
    • 생물정신의학
    • /
    • 제19권4호
    • /
    • pp.159-163
    • /
    • 2012
  • An appropriate research design for hypotheses and purposes leads to a good quality of research results. In this review article, we summarized the types of research methods and described the characteristics of clinical trials. Research designs are categorized into observational studies and experimental ones, depending on data collecting methods. In an observational study, there are cross-sectional, cohort and case-control studies. Parallel groups design and crossover trial studies are representative designs in a randomized controlled trial study, a kind of experimental study. Clinical researchers should understand the characteristics of clinical research designs including advantages and disadvantages and choose the suitable design according to their study purposes and the nature of collected data or subjects.

Brain Activation Pattern and Functional Connectivity Network during Experimental Design on the Biological Phenomena

  • Lee, Il-Sun;Lee, Jun-Ki;Kwon, Yong-Ju
    • 한국과학교육학회지
    • /
    • 제29권3호
    • /
    • pp.348-358
    • /
    • 2009
  • The purpose of this study was to investigate brain activation pattern and functional connectivity network during experimental design on the biological phenomena. Twenty six right-handed healthy science teachers volunteered to be in the present study. To investigate participants' brain activities during the tasks, 3.0T fMRI system with the block experimental-design was used to measure BOLD signals of their brain and SPM2 software package was applied to analyze the acquired initial image data from the fMRI system. According to the analyzed data, superior, middle and inferior frontal gyrus, superior and inferior parietal lobule, fusiform gyrus, lingual gyrus, and bilateral cerebellum were significantly activated during participants' carrying-out experimental design. The network model was consisting of six nodes (ROIs) and its six connections. These results suggested the notion that the activation and connections of these regions mean that experimental design process couldn't succeed just a memory retrieval process. These results enable the scientific experimental design process to be examined from the cognitive neuroscience perspective, and may be used as a basis for developing a teaching-learning program for scientific experimental design such as brain-based science education curriculum.

석유화학단지 수소 재활용 최적 네트워크 설계 (Optimal Hydrogen Recycling Network Design of Petrochemical Complex)

  • 정창현;이철진;김대현;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.25-31
    • /
    • 2007
  • 석유화학단지내에서 석유화학공장과 정유공장과 같은 산업현장에서는 상당량의 수소가 부산물로 발생되고 있으나, 이는 대부분 자체적으로 연료로 사용되고 있다. 그러나 연료로 사용되는 상당량의 수소를 에너지원의 원료나 기타 공정의 원료로 재활용할 경우, 현재보다 수소의 가치를 높여서 사용할 수 있다. 본 연구에서는 석유화학단지내 공장간 수소 재활용 네트워크를 설계하였다. 수소 핀치 분석을 통하여 교환망 구성에 필요한 최소의 수소 요구 및 정제량을 파악하고, 네트워크 구성에 필요한 비용과 기타 제약 조건으로 최적화 문제를 구성하여 공급처(source)와 수요처(sink) 공장간에 최적으로 수소를 재활용하기 위한 네트워크를 설계하였다.

실험계획법을 이용한 HEK293 및 Namalwa 세포배양 특성 규명 (Characterization of HEK293 and Namalwa Cell Cultures by Using Design of Experiment)

  • 강경호;서준석;김동일
    • KSBB Journal
    • /
    • 제27권3호
    • /
    • pp.186-194
    • /
    • 2012
  • Various human host cell lines, which are more effective than the other original human cell lines, have been developed and used. Highly efficient human cell line can be obtained from the fusion between human embryonic kidney 293 (HEK293) and human Burkitt's lymphoma cells (Namalwa). Fused cell line has the advantages of both cell lines such as the high transfection efficacy of HEK293 cells and the constitutive expression of Epstein-Barr virus (EBV) genome which is related with high expression of target protein and anti-apoptotic growth of Namalwa cells. In this study, characterization of two original cell lines was performed by using design of experiment (DOE) considering cell maintenance, media development, optimization of culture condition, and scale-up. The formation of aggregates was apparent with high glutamine concentration at more than 6 mM. Supplementation of hydrolysates showed positive effects on the growth performances of HEK293 cells. On the contrary, Namalwa cells showed negative results. It was confirmed that Namalwa cells were more sensitive to lower temperature at $35^{\circ}C$ and hyperosmotic condition over 260 mOsm/kg. In addition, both cell lines showed limited growth in 3-L bioreactor due to shear stress.

Design of Optical Biological Sensor for Phycocyanin Parameters Measurement using Fluorescence Technique

  • Lee, Sung Hwa;Mariappan, Vinayagam;Won, Dong Chan;Ann, Myungsuk;Yang, Seungyoun
    • International journal of advanced smart convergence
    • /
    • 제5권2호
    • /
    • pp.73-79
    • /
    • 2016
  • Remote sensing and measurement are of paramount importance of providing information on the state of water quality in water bodies. The formation and growth of cyanobacteria is of serious concern to in land aquatic life forms and human life. The main cause of water quality deterioration stems from anthropogenic induced eutrophication. The goal of this research to quantify and determine the spatial distribution of cyanobacteria concentration in the water using remote sensing technique. The standard approach to measure water quality based on the direct measurement of the fluorescence of the chlorophyll a in the living algal cells and the same approach used to detect the phycobilin pigments found in blue-green algae (a.k.a. cyanobacteria), phycocyanin and phycoerythrin. This paper propose the emerging sensor design to measure the water quality based on the optical analysis by fluorescence of the phycocyanin pigment. In this research, we developed an method to sense and quantify to derive phycocyanin intensity index for estimating cyanobacteria concentrations. The development of the index was based on the reflectance difference between visible light band 620nm and 665nm. As a result of research this paper presents, an optical biological sensor design information to measure the Phycocyanin parameters in water content.

Soft robotics: A solid prospect for robotizing the natural organisms

  • Tahir, Ahmad M.;Naselli, Giovanna A.;Zoppi, Matteo
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.69-97
    • /
    • 2018
  • Innovation is considered as key to ensure continuous advancement and firm progress in any field. Robotics, with no exception, has gained triumph and approval based on its strength to address divers range of applications as well as its capacity to adapt new ways and means to enhance its applicability. The core of novelty in robotics technology is the perpetual curiosity of human beings to imitate natural systems. This desire urges to continuously explore and find new feet. In the past, contemporary machines, in different shapes, sizes and capabilities, were developed that can perform variety of tasks. The major advantage of these developments was the ability to exhibit superior control, strength and repeatability than the corresponding systems they were replicating. However, these systems were rigid and composed of hard an underlying structure, which is a constraint in bringing into being the compliance that exists in natural organisms. Inspiration of achieving such compliance and to take the full advantage of the design scheme of biological systems compelled researchers and scientists to develop systems avoiding conventional rigid structures. This ambition, to produce biological duos, needs soft and more flexible materials and structures to realize innovative robotic systems. This new footpath to craft biological mockups facilitates further to exploit new materials, novel design methodologies and new control techniques. This paper presents an appraisal on such innovative comprehensions, conferring to their design specific importance. This demonstration is potentially useful to prompt the novelty of soft robotics.

Short Review on Quartz Crystal Microbalance Sensors for Physical, Chemical, and Biological Applications

  • Il Ryu, Jang;Hoe Joon, Kim
    • 센서학회지
    • /
    • 제31권6호
    • /
    • pp.389-396
    • /
    • 2022
  • Quartz crystal microbalance (QCM) based sensors are used for various applications owing to advantages such as excellent accuracy and precision, rapid response, and tiny footprint. Traditional applications of QCM-based sensors include biological sensing and thin-film thickness monitoring. Recently, QCMs have been used as functional material for novel physical and chemical detections, and with improved device design. QCM-based sensors are garnering considerable attention in particulate matter sensing and electric nose application. This review covers the challenges and solutions in physical, chemical, and biological sensing applications. First, various physical sensing applications are introduced. Secondly, the toxic gas and chemical detection studies are outlined, focusing on introducing a coating method for uniform sensing film and sensing materials for a minimal damping effect. Lastly, the biological and medical sensing applications, which use the monomolecularly decorating method for biomolecule recognition and a brief description of the overall measuring system, are also discussed.

유기적 모더니즘 가구디자인의 조형적 특성에 관한 연구 - 현대미술과의 상호연관성을 중심으로 - (A Study on Formative Characteristics of Organic Modernism Furniture Design - Chiefly focusing on mutual relationship with Modem Art -)

  • 최병훈
    • 한국실내디자인학회논문집
    • /
    • 제13권3호
    • /
    • pp.153-161
    • /
    • 2004
  • Organic Modernism was inaugurated by Alvar Valto as an alternative plan to the formative limitation of Geometrical Modernism. It began to appear in the 1930s in the fields of Architecture, Furniture, Product Design and so on. It is known that began with organic formative language is closely related to surrealistic artists Andre Breton as well as other artists and sculptors in that era. Such Formative Language formalized a stream of Organic Modernism Furniture Design unique to the regional and cultural characteristics of Scandinavia. After crossing over to America, mass production of Furniture was born and new materials were linked by industrialization. The Characteristics of Organic Formation in Modern Art such as Three -Dimensional, Biological Morphological, Symbolical, Primitive, Fantastical, Non-Realistic, Incidental, Irregular, transmit to Furniture Design. They are as Characteristics especially with Three-Dimensional, Biological Morphological and Symbolical aspects. Histories of Art and design, there are some examples showing mutual Interchange between Functional and Artistic Character. This thesis also clarifies the Formative Relationship that the Furniture designers who pursued Functionality and Mass Production had obtained from Modern Artistic works and the Artists, through the process of comparing and researching the typical Artists and their works.