DOI QR코드

DOI QR Code

Short Review on Quartz Crystal Microbalance Sensors for Physical, Chemical, and Biological Applications

  • Il Ryu, Jang (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST)) ;
  • Hoe Joon, Kim (Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
  • Received : 2022.11.11
  • Accepted : 2022.11.29
  • Published : 2022.11.30

Abstract

Quartz crystal microbalance (QCM) based sensors are used for various applications owing to advantages such as excellent accuracy and precision, rapid response, and tiny footprint. Traditional applications of QCM-based sensors include biological sensing and thin-film thickness monitoring. Recently, QCMs have been used as functional material for novel physical and chemical detections, and with improved device design. QCM-based sensors are garnering considerable attention in particulate matter sensing and electric nose application. This review covers the challenges and solutions in physical, chemical, and biological sensing applications. First, various physical sensing applications are introduced. Secondly, the toxic gas and chemical detection studies are outlined, focusing on introducing a coating method for uniform sensing film and sensing materials for a minimal damping effect. Lastly, the biological and medical sensing applications, which use the monomolecularly decorating method for biomolecule recognition and a brief description of the overall measuring system, are also discussed.

Keywords

Acknowledgement

This work was supported by KIMM Institutional Program (NK236F) and NST/KIMM.

References

  1. F. Butti, P. Bruschi, M. Dei, and M. Piotto, "A compact instrumentation amplifier for MEMS thermal sensor interfacing", Analog Integrat. Circuits Signal Process., Vol. 72, No. 3, pp. 585-594, 2012. https://doi.org/10.1007/s10470-011-9661-2
  2. Q. Ma, K. Huang, Z. Yu, and Z. Wang, "A MEMS-based electric field sensor for measurement of high-voltage DC synthetic fields in air", IEEE Sens. J., Vol. 17, No. 23, pp. 7866-7876, https://doi.org/10.1109/JSEN.2017.2762327
  3. J. Lan and Y. Shi, "Vehicle detection and recognition based on a MEMS magnetic sensor", in 2009 4th IEEE Int. Conf. Nano/Micro Eng. Mol. Syst., pp. 404-408, 2019.
  4. H. Liu, L. Zhang, K. H. H. Li, and O. K. Tan, "Microhotplates for metal oxide semiconductor gas sensor applications-Towards the CMOS-MEMS monolithic approach", Micromachines, Vol. 9, No. 11, pp. 557(1)-557(24), 2018.
  5. H. Qu, "CMOS MEMS fabrication technologies and devices", Micromachines, Vol. 7, No. 1, pp. 14(1)-14(21), 2016. https://doi.org/10.3390/mi7010001
  6. H. J. Kim, S. I. Jung, J. Segovia-Fernandez, and G. Piazza, "The impact of electrode materials on 1/f noise in piezoelectric AlN contour mode resonators", AIP Adv., Vol. 8, No. 5, pp. 055009(1)-055009(8), 2018.
  7. V. M. Mecea, "From Quartz Crystal Microbalance to Fundamental Principles of Mass Measurements," Anal. Lett., Vol. 38, No. 5, pp. 753-767, 2005. https://doi.org/10.1081/AL-200056171
  8. J. Zheng, J. Zhou, P. Zeng, Y. Liu, Y. Shen, W. Yao, Z. Chen, J. Wu, S. Xiong, Y. Chen, X. Shi, J. Liu, Y. Fu, and H. Duan, "30 GHz surface acoustic wave transducers with extremely high mass sensitivity," Appl. Phys. Lett., Vol. 116, No. 12, p. 123502, 2020.
  9. H. Seh, T. Hyodo, and H. L. Tuller, "Bulk acoustic wave resonator as a sensing platform for NOx at high temperatures", Sens. Actuators B: Chem., Vol. 108, No. 1-2, pp. 547-552, 2005. https://doi.org/10.1016/j.snb.2004.11.083
  10. A. Kochhar, A. Mahmoud, Y. Shen, N. Turumella, and G. Piazza, "X-Cut Lithium Niobate-Based Shear Horizontal Resonators for Radio Frequency Applications", J. Microelectromech.Syst., Vol. 29, No. 6, pp. 1464-1472, 2020. https://doi.org/10.1109/JMEMS.2020.3026167
  11. J. C. Doll, B. C. Petzold, B. Ninan, R. Mullapudi, and B. L. Pruitt, "Aluminum nitride on titanium for CMOS compatible piezoelectric transducers", J. Micromech. Microeng., Vol. 20, No. 2, p. 025008, 2009.
  12. Z. Xu and Z. Li, "Dynamic humidity response of surface acoustic wave sensors based on zinc oxide nanoparticles sensitive film", Appl. Phys. A, Vol. 127, No. 6, pp. 1-7, 2021. https://doi.org/10.1007/s00339-020-04132-x
  13. C. Lam, "A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry", in 2008 IEEE Ultrason. Symp., pp. 694-704, 2008.
  14. B. Murashov and Y. P. Tsvetkov, "Instrument for checking quartz-crystal oscillators with standard frequency signals in the long-wave and very-long-wave ranges", Meas. Tech., Vol. 19, No. 7, pp. 1012-1015, 1976. https://doi.org/10.1007/BF00821917
  15. A. Javadi, A. Solouk, M. H. Nazarpak, and F. Bagheri, "Surface engineering of titanium-based implants using electro-spraying and dip coating methods", Mater. Sci. Eng. C, Vol. 99, pp. 620-630, 2019. https://doi.org/10.1016/j.msec.2019.01.027
  16. S. K. Boda, X. Li, and J. Xie, "Electrospraying an enabling technology for pharmaceutical and biomedical applications: A review", J. Aerosol Sci., Vol. 125, pp. 164-181, 2018. https://doi.org/10.1016/j.jaerosci.2018.04.002
  17. A. Wajid, "On the accuracy of the quartz-crystal microbalance (QCM) in thin-film depositions", Sens. Actuators a: Phys., Vol. 63, No. 1, pp. 41-46, 1997. https://doi.org/10.1016/S0924-4247(97)80427-X
  18. M. Chen, F. J. Romay, L. Li, A. Naqwi, and V. A. Marple, "A novel quartz crystal cascade impactor for real-time aerosol mass distribution measurement", Aerosol Sci. Technol., Vol. 50, No. 9, pp. 971-983, 2016. https://doi.org/10.1080/02786826.2016.1213790
  19. J.-S. Choi and W.-T. Park, "MEMS particle sensor based on resonant frequency shifting", Micro Nano Syst. Lett., Vol. 8, No. 1, pp. 1-6, 2020. https://doi.org/10.1186/s40486-019-0101-x
  20. U. Soysal, E. Gehin, E. Algre, B. Berthelot, G. Da, and E. Robine, "Aerosol mass concentration measurements: Recent advancements of real-time nano/micro systems", J. Aerosol Sci., Vol. 114, pp. 42-54,
  21. J. Zhao, M. Liu, L. Liang, W. Wang, and J. Xie, "Airborne particulate matter classification and concentration detection based on 3D printed virtual impactor and quartz crystal microbalance sensor", Sens. Actuators A: Phys., Vol. 238, pp. 379-388, 2016. https://doi.org/10.1016/j.sna.2015.12.029
  22. D. Liang, W.-P. Shih, C.-S. Chen, and C.-A. Dai, "A miniature system for separating aerosol particles and measuring mass concentrations", Sens., Vol. 10, No. 4, pp. 3641-3654, 2010. https://doi.org/10.3390/s100403641
  23. D. Johannsmann, A. Langhoff, and C. Leppin, "Studying soft interfaces with shear waves: Principles and applications of the Quartz Crystal Microbalance (QCM)", Sens., Vol. 21, No. 10, pp. 3490(1)-3490(79), 2021.
  24. I. R. Jang, J. Park, C. Ryu, S. I. Jung, H. N. Kim, S. B. Kim, and H. J. Kim, "High Precision Liquid Salinity Sensing Using a CNT Coated Quartz Crystal Microbalance", IEEE Sens. J., Vol. 22, No. 8, pp. 7684-7691, 2022.
  25. I. R. Jang, S. I. Jung, G. Lee, I. Park, S. B. Kim, and H. J. Kim, "Quartz crystal microbalance with thermally-controlled surface adhesion for an efficient fine dust collection and sensing", J. Hazard.Mater., Vol. 424, p. 127560, 2022.
  26. N. D. Ngo, J. Lee, M.-W. Kim, and J. Jang, "Measurement of PM 2.5 Mass Concentration Using an Electrostatic Particle Concentrator-Based Quartz Crystal Microbalance", IEEE Access, Vol. 7, pp. 170640-170647, 2019. https://doi.org/10.1109/access.2019.2955377
  27. J. Liang, D. Kong, and C. Liu, "Study on Dual Channel Lateral Field Excitation Quartz Crystal Microbalance for Measuring Liquid Electrical Properties", Sens., Vol. 19, No. 5, pp. 1253(1)-1253(11), 2019.
  28. X. Huang, Q. Chen, W. Pan, and Y. Yao, "Advances in the Mass Sensitivity Distribution of Quartz Crystal Microbalances: A Review", Sens., Vol. 22, No. 14, pp. 5112(1)-5112(20), 2022.
  29. P. Sun, Y. Jiang, G. Xie, X. Du, and J. Hu, "A room temperature supramolecular-based quartz crystal microbalance (QCM) methane gas sensor", Sens. Actuators B: Chem., Vol. 141, No. 1, pp. 104-108, 2009. https://doi.org/10.1016/j.snb.2009.06.012
  30. W. Chen, F. Deng, M. Xu, J. Wang, Z. Wei, and Y. Wang, "GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations", Sens Actuators B: Chem., Vol. 273, pp. 498-504, 2018. https://doi.org/10.1016/j.snb.2018.06.062
  31. T. Addabbo, A. Fort, M. Mugnaini, V. Vignoli, A. Baldi, and M. Bruzzi, "Quartz-crystal microbalance gas sensors based on TiO 2 nanoparticles", EEE Trans. Instrum. Meas., Vol. 67, No. 3, pp. 722-730, 2018. https://doi.org/10.1109/TIM.2017.2785118
  32. M. Matsuguchi and Y. Kadowaki, "Poly (acrylamide) derivatives for QCM-based HCl gas sensor applications", Sens. Actuators B: Chem., Vol. 130, No. 2, pp. 842-847, 2008. https://doi.org/10.1016/j.snb.2007.10.049
  33. A. Fort, A. Lo Grasso, M. Mugnaini, E. Panzardi, and V. Vignoli, "QCM Measurements of RH with Nanostructured Carbon-Based Materials: Part 1-Theory and Model", Chemosensors, Vol. 10, No. 8, pp. 315(1)-315(13), 2022.
  34. P. Bhattacharyya, "Technological journey towards reliable microheater development for MEMS gas sensors: A review", IEEE Trans. Device Mater. Reliab., Vol. 14, No. 2, pp. 589-599, 2014. https://doi.org/10.1109/TDMR.2014.2311801
  35. I. R. Jang, S. I. Jung, J. Park, C. Ryu, I. Park, S. B. Kim, and H. J. Kim, "Direct and controlled device integration of graphene oxide on Quartz Crystal Microbalance via electrospray deposition for stable humidity sensing", Ceram. Int., Vol. 48, No. 6, pp. 8004-8011, 2021.
  36. W. Li, J. Lin, X. Wang, J. Jiang, S. Guo, and G. Zheng, "Electrospray deposition of ZnO thin films and its application to gas sensors", Micromachines, Vol. 9, No. 2, pp. 66(1)-66(7), 2018.
  37. Y. Yao, X. Huang, Q. Chen, Z. Zhang, and W. Ling, "High sensitivity and high stability QCM humidity sensors based on polydopamine coated cellulose nanocrystals/graphene oxide nanocomposite", Nanomater., Vol. 10, No. 11, pp. 2210(1)-2210(12), 2020.
  38. W. Tao, P. Lin, S. Liu, Q. Xie, S. Ke, and X. Zeng, "1-butyl-3-methylimidazolium tetrafluoroborate film as a highly selective sensing material for non-invasive detection of acetone using a quartz crystal microbalance", Sens., Vol. 17, No. 1, pp. 194(1)-194(12), https://doi.org/10.3390/s17010001
  39. E. Oleneva, T. Kuchmenko, E. Drozdova, A. Legin, and D. Kirsanov, "Identification of plastic toys contaminated with volatile organic compounds using QCM gas sensor array", Talanta, Vol. 211, p. 120701, 2020.
  40. K. Triyana, A. Sembiring, A. Rianjanu, S. N. Hidayat, R. Riowirawan, T. Julian, A. Kusumaatmaja, I. Santoso, and R. Roto, "Chitosan-based quartz crystal microbalance for alcohol sensing", Electron., Vol. 7, No. 9, pp. 181(1)-181(11), 2018.
  41. I. Mannelli, M. Minunni, S. Tombelli, and M. Mascini, "Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection", Biosens. bioelectron., Vol. 18, No. 2-3, pp. 129-140, 2003. https://doi.org/10.1016/S0956-5663(02)00166-5
  42. R. Z. Hao, H. B. Song, G. M. Zuo, R. F. Yang, H. P. Wei, D. B. Wang, Z. Q. Cuia, Z. P. Zhang, Z. X. Cheng, and X. E. Zhang, "DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection", Biosens. Bioelectron., Vol. 26, No. 8, pp. 3398-3404, 2011. https://doi.org/10.1016/j.bios.2011.01.010
  43. M. Z. Atashbar, B. Bejcek, A. Vijh, and S. Singamaneni, "QCM biosensor with ultra thin polymer film", Sens. Actuators B: Chem., Vol. 107, No. 2, pp. 945-951, 2005. https://doi.org/10.1016/j.snb.2004.12.047
  44. S.-R. Hong, H.-D. Jeong, and S. Hong, "QCM DNA biosensor for the diagnosis of a fish pathogenic virus VHSV", Talanta, Vol. 82, No. 3, pp. 899-903, 2010. https://doi.org/10.1016/j.talanta.2010.04.065
  45. M. Lazerges, H. Perrot, N. Zeghib, E. Antoine, and C. Compere, "In situ QCM DNA-biosensor probe modification", Sens. Actuators B: Chem., Vol. 120, No. 1, pp. 329-337, 2006. https://doi.org/10.1016/j.snb.2006.02.024
  46. C. Zhang, G. Feng, and Z. Gao, "Development of a new kind of dual modulated QCM biosensor", Biosens. Bioelectron., Vol. 12, No. 12, pp. 1219-1225, 1997. https://doi.org/10.1016/S0956-5663(97)00065-1
  47. A. Afzal, A. Mujahid, R. Schirhagl, S. Z. Bajwa, U. Latif, and S. Feroz, "Gravimetric viral diagnostics: QCM based biosensors for early detection of viruses", Chemosensors, Vol. 5, No. 1, pp. 7(1)-7(25), https://doi.org/10.3390/chemosensors5010001
  48. T. Wasilewski, B. Szulczynski, D. Dobrzyniewski, W. Jakubaszek, J. Gebicki, and W. Kamysz, "Development and Assessment of Regeneration Methods for Peptide-Based QCM Biosensors in VOCs Analysis Applications", Biosens., Vol. 12, No. 5, pp. 309(1)-309(14), 2022.
  49. Z. Farka, D. Kovar, and P. Skladal, "Rapid detection of microorganisms based on active and passive modes of QCM", Sens., Vol. 15, No. 1, pp. 79-92, 2014. https://doi.org/10.3390/s150100079
  50. M. Yilmaz, M. Bakhshpour, I. Gokturk, A. K. Piskin, and A. Denizli, "Quartz crystal microbalance (QCM) based biosensor functionalized by HER2/Neu antibody for breast cancer cell detection", Chemosensors, Vol. 9, No. 4, pp. 80(1)-80(15), 2021.
  51. V. Ratautaite, S. N. Topkaya, L. Mikoliunaite, M. Ozsoz, Y. Oztekin, A. Ramanaviciene, and A. Ramanavicius, "Molecularly imprinted polypyrrole for DNA determination", Electroanalysis, Vol. 25, No. 5, pp. 1169-1177, 2013. https://doi.org/10.1002/elan.201300063
  52. I. Baleviciute, V. Ratautaite, A. Ramanaviciene, Z. Balevicius, J. Broeders, D. Croux, M. McDonald, F. Vahidpour, R. Thoelen, W. D. Ceuninck, K. Haenen, M. Nesladek, A. Reza, and A. Ramanavicius, "Evaluation of theophylline imprinted polypyrrole film", Synthetic Metals, Vol. 209, pp. 206-211, 2015. https://doi.org/10.1016/j.synthmet.2015.07.021
  53. V. Ratautaite, D. Plausinaitis, I. Baleviciute, L. Mikoliunaite, A. Ramanaviciene, and A. Ramanavicius, "Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy", Sens. Actuators B: Chem., Vol. 212, pp. 63-71, 2015. https://doi.org/10.1016/j.snb.2015.01.109
  54. G. Sauerbrey, "Verwendung von Schwingquarzen zur Wagung dunner Schichten und zur Mikrowagung", Zeitschrift fur physik, Vol. 155, No. 2, pp. 206-222, 1959. https://doi.org/10.1007/BF01337937
  55. I. Plikusiene, V. Maciulis, A. Ramanavicius, and A. Ramanaviciene, "Spectroscopic Ellipsometry and Quartz Crystal Microbalance with Dissipation for the Assessment of Polymer Layers and for the Application in Biosensing", Polym., Vol. 14, No. 5, p. 1056(1)-1056(21), 2022.
  56. S. Akgonullu, E. Ozgur, and A. Denizli, "Quartz Crystal Microbalance-Based Aptasensors for Medical Diagnosis", Micromachines, Vol. 13, No. 9, p. 1441(1)-1441(18), 2022.
  57. W. Shan, Y. Pan, H. Fang, M. Guo, Z. Nie, Y. Huang, and S. Yao., "An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label", Talanta, Vol. 126, pp. 130-135, 2014. https://doi.org/10.1016/j.talanta.2014.03.056
  58. L. Wang, R. Wang, F. Chen, T. Jiang, H. Wang, M. Slavik, H. Wei, and Y. Li, "QCM-based aptamer selection and detection of Salmonella typhimurium", Food chemistry, Vol. 221, pp. 776-782, 2017. https://doi.org/10.1016/j.foodchem.2016.11.104