• Title/Summary/Keyword: Biological degradation

Search Result 827, Processing Time 0.03 seconds

Kinetics of Metolachlor Degradation by Zerovalent Iron (Zerovalent Iron에 의한 Metolachlor의 분해 Kinetics)

  • Kim, Su-Jung;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.55-61
    • /
    • 2007
  • Metolachlor may pose a threat to surface and ground water qualities due to its high solubility in water, Zerovalent iron (ZVI) releases $e^-$ which can degrade the organochlorinated compounds. The objective of this research was to evaluate the kinetics of metolachlor degradation as affected by ZVI sources [Peerless unannealed (PU) and Peerless annealed (PA)] and ZVI levels (1 and 5%) under batch conditions at different metolachlor concentrations (200 and 1000 mg/l) and temperatures (15, 25, and $35^{\circ}C$). The effectiveness of ZVI on metolachlor degradation was assessed by characterizing the dechlorinated metolachlor byproduct molecules. Metolachlor degradation by ZVI followed the first-ordered kinetics with a higher rate constant at higher level of ZVI treatment. At 5% (w/v) of PU and PA treatment, the half-lives of metolachlor degradation were 9.93 and 6.51 h and all of the initial metolachlor were degraded in 72 and 48 h, respectively. Rate constants (k) of metolachlor degradation were higher at the lower initial metolachlor concentration. The metolachlor degradation by ZVI was temperature dependent showing that the rate constant (k) at 15, 25, and $35^{\circ}C$ were 0.0805, 0.1017, and 0.3116 /h, respectively. The ZVI-mediated metolachlor degradation yielded two byproduct molecules identified as dechlorinated metolachlor $(C_{13}H_{18}NO)$ and dechlorinated-dealkylated metolachlor $(C_{12}H_{17}NO)$. The PA ZVI was more effective than PU ZVI in metolachlor degradation.

Relationships among a Habitat-Riparian Indexing System (HIS), Water Quality, and Land Coverage: a Case Study in the Main Channel of the Yangsan Stream (South Korea)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Hong, Dong-Kyun;Choi, Jong-Yun;Yoon, Ju-Duk;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.502-509
    • /
    • 2009
  • In this study a total of 27 stream sites, at 1 km intervals, were monitored for simple physicochemical water characteristics, land coverage patterns, and stream environment characteristics using the Habitat-riparian Indexing System (HIS), in the Yangsan Stream. The HIS has been tested in previous research, resulting in some identification of advantages in the application to the stream ecosystems data. Even though reliable stream environment characterization was possible using HIS, there was no information about the application of this tool to present continuity of environmental changes in stream systems. Also the necessity was raised to compare the results of HIS application with land coverage information in order to provide useful information in management strategy development. The monitoring results of this study showed that changes of environmental degradation were well represented by HIS. Especially, stream environment degradation due to construction was relatively well reflected in the HIS monitoring results, and the main causality of Yangsan Stream degradation was expansion of the urbanized area. In addition, there were significant relationships between the HIS scores and land coverage information. Therefore, it is necessary to prepare appropriate options in controlling or managing the expansion of the industrialized areas in this stream basin in order to improve the stream environment. For this purpose, ensemble utilization of HIS results, water quality, and geographical information, resulting in integration with remote sensing processes can be possible.

Degradation and Preservation of wood (목재문화재의 열화에 대한 고찰)

  • Kim, Ik-Ju
    • 보존과학연구
    • /
    • s.7
    • /
    • pp.265-277
    • /
    • 1986
  • The degradation of wood is maimly caused by biological and thermal factor. In general, the field of wood preservation can be divided into two broadcategories; namely the deterioration, protection of wood, and the teatment of wood with preservatives. Wood in sea or brackish water incurs marine borer damage, consisting of attack by marine animal and also wood on land suffers severely from insect damage. But the largest wood degradation is caused by microorganism. Animals that attack wood in a marine environment are especially destructive in warm water-regions, little was achieved in their control recently. Therefore this manuscript only introduce the importance of wood deterioration caused by marine animal.

  • PDF

Anaerobic Microbial Degradation of Lignocellulose and Lignolic Compounds (미생물에 의한 섬유질과 리그닌 유도체의 혐기적 분해)

  • 김소자;김욱한
    • The Korean Journal of Food And Nutrition
    • /
    • v.4 no.1
    • /
    • pp.99-107
    • /
    • 1991
  • Lignocellulose and lignolic compounds were absolutely given much weight In the biosphere, and their degradation was essential for continuous biological carbon circulation. Whereas aerobic cellulolytic microorganism dissolved the cellulose into their elements in the first stage, strict anaerobic cellulolytic microorganism's role was taken I increasing interest through the recent research. It was reviewed that anaerobic microbial degradation process of lignocellulose and its derivatives (cellulose, lignin, oligolignol and monoaromatic compound), and function of anaerobic microorganism on the. environmental ecology.

  • PDF

Degradation of the Herbicide, Alachlor, by Soil Microorganisms -Part I. Degradation in the flooded paddy soils- (제초제 Alachlor의 토양미생물에 의한 분해 -제일보(第一報). 담수답토양에서의 분해-)

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.27 no.2
    • /
    • pp.64-72
    • /
    • 1984
  • Alachlor, 2-chloro-2, '6'-diethyl-N-(methoxymethyl) acetanilide, which had been incubated in the flooded paddy soils yielded 1-formyl-2,3-dihydro-7-ethylindole, 2,6-diethylaniline, 2,6-diethylacetanilide, 2,6-diethyl-N-(methoxymethyl) acetanilide, 2-hydroxy-2, '6'-diethyl-N-(methoxymethyl) acetanilide, and three unidentifiable compounds as its degradation products. The water-soluble products of Alachlor in soil suspensions increased with incubation periods and similar results were obtained from the incubation of Rhizoctonia solani, as verified by use of the ring $-^{14}C-$labeled Alachlor. Streptomyces lavendulae Ru 3340-8 produced 2-hydroxy-2, '6'-diethyl-N-(methoxymethyl) acetanilide as the major degradation product as much as 25%, whereas Bacillus brevis IFO 3331, Bacillus cruciviae, and Pseudomonas putida did not produce it.

  • PDF

Degradation of the Herbicide, Alachlor, by Soil Microorganisms -III. Degradation under an Upland Soil Condition- (제초제 Alachlor의 토양미생물에 의한 분해 -제 3 보. 밭토양 조건에서의 분해-)

  • Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.182-189
    • /
    • 1986
  • Alachlor, 2-chloro-2',6'-diethyl-N-(methoxymethyl) acetanilide produced four major degradation products, when incubated under an upland soil condition for 80 days. They include 8-ethyl-2-hydroxy-N-(methoxymethyl)-1,2,3,4-tetrahydroquinoline (m/z 221), N-hydroxyacetyl-2,3-dihydro-7-ethylindole (m/z 205), 2-hydroxy-2',6'-diethyl-N-(methoxymethyl) acetanilide (m/z 251), and 9-ethyl-1,5-dihydrol-(methoxymethyl)-5-methyl-4,1-benzoxazepin-2 (3H)-one (m/z 249). The products turned out to be a little different from those obtained under the flooded paddy soil condition used in the previous paper. The plausible pathways for the degradation were proposed.

  • PDF

Degradation of Organochlorinated Pollutants by Microorganism -Isolation of PCBs-Degrading Strain and Conditions of Degradation- (미생물에 의한 난분해성 유기염소계 오염물질의 분해 -PCBs 분해 균주의 분리 및 그 분해 조건-)

  • Kim, Chan-Jo;Oh, Man-Jin;Lee, Jong-Soo;Sohn, Hyun-Ju;Sung, Chang-Keun
    • Applied Biological Chemistry
    • /
    • v.29 no.3
    • /
    • pp.273-278
    • /
    • 1986
  • PCBs was degraded by bacterium, which was classified as a strain of Alcaligenes aquamarinus. Its PCB-42 degradation was maximized when grown on mineral salts medium containing 0.1% of PCB-42 as a sole carbon source at $25^{\circ}C$ and initial pH $7.0{\sim}8.0$, and also shaking culture was effective for it. The addition of glucose and peptone were effective for the degradation of PCB-42, but metal ions were not effective.

  • PDF

Enhanced Biodegradation of 2,4,6-Trinitrotoluene (TNT) with Various Supplemental Energy Sources

  • Park, Chulhwan;Kim, Tak-Hyun;Kim, Sangyong;Kim, Seung-Wook;Lee, Jinwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.695-698
    • /
    • 2002
  • The biodegradation of 2,4,6-trinitrotoluene (TNT) was performed on a laboratory scale using P. putida originally isolated from explosive-contaminated soil. One hundred mg/1 of TNT was completely degraded within 20 h under optimum conditions. Various supplemental energy sources (carbon sources, nitrogen sources, and surfactant) were tested, with the main objective of identifying an inexpensive source and enhancing the degradation rate for large-scale biodegradation. Based on the degradation rate, molasses was selected as a possible supplemental carbon source, along with NH$_4$Cl and Tween 80 as a nitrogen source and surfactant, respectively. The degradation rate increased about 3.3 fo1d when supplemental energy sources were added and the degradation rate constant increased from 0.068 h$\^$-1/ to 0.224 h$\^$-1/. These results appear to be promising in application of the process to TNT-contaminated soil applications.

Changes in the Activities of Enzymes Involved in the Degradation of Butylbenzyl Phthalate by Pleurotus ostreatus

  • Hwang, Soon-Seok;Kim, Hyoun-Young;Ka, Jong-Ok;Song, Hong-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.239-243
    • /
    • 2012
  • Degradation of butylbenzyl phthalate (BBP) by the white rot fungus Pleurotus ostreatus and the activities of some degrading enzymes were examined in two different media containing 100 mg/l of the compound. P. ostreatus pre-grown for 7 days in complex YMG medium was able to completely degrade BBP within an additional 24 h but degraded only 35 mg/l of BBP in 5 days of incubation in minimal medium. Fungal cell mass in the culture in YMG medium was higher in the presence than in the absence of BBP. The esterase activity of the fungal culture in YMG medium was higher than that in minimal medium and increased with the addition of BBP. On the contrary, laccase activity was higher in minimal medium and it did not increase upon the addition of BBP. General peroxidase activity increased for a few days after the addition of BBP to both media. The degradation of BBP and its metabolites by P. ostreatus thus may be attributed mostly to esterase rather than lignin-degrading laccase. In addition, the activities of the enzymes involved in BBP degradation and their changes varied significantly in the different media and culture conditions.

Photocatalytic degradation of organic compounds by 2-ethylimidazole-treated titania under visible light illumination

  • Seo, Jiwon;Jeong, Junyoung;Lee, Changha
    • Membrane and Water Treatment
    • /
    • v.10 no.3
    • /
    • pp.223-229
    • /
    • 2019
  • Titania modified by 2-ethylimidazole (2-EI) (denoted as $2-EI-TiO_2$) demonstrated visible light photocatalytic activity for the degradation of organic compounds. $2-EI-TiO_2$ was a bright brown powder that exhibited similar crystallinity and morphology with the control $TiO_2$. A diffuse reflectance spectrum indicated that $2-EI-TiO_2$ absorbs visible light of all wavelengths. X-ray photoelectron spectroscopy (XPS) confirmed the cationic state of nitrogen species (e.g. Ti-O-N) on the surface of $2-EI-TiO_2$. Visible light-illuminated $2-EI-TiO_2$ degraded $10{\mu}M$ 4-chlorophenol (4-CP) by approximately 85% in 4 h. The photochemical activity of $2-EI-TiO_2$ was selective in targeting the organic compound. The repeated use of $2-EI-TiO_2$ decreased the photocatalytic activity for the 4-CP degradation. Experiments using radical scavengers and oxidant probes revealed that the oxidation by photogenerated holes is responsible for the degradation of organic compounds by illuminated $2-EI-TiO_2$ and the role of $^{\bullet}OH$ is negligible.