• Title/Summary/Keyword: Biological damage

Search Result 907, Processing Time 0.024 seconds

Evaluation of Offshore Seawater Qualify using Gametes and Embryos of Starfishes (Asterina pectinifera) (불가사리 알을 이용한 연안해수의 수질 평가)

  • Yu Chun Man;Lee Jong Bin;Park Jong Cheon;Joo Hyun Soo
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.3
    • /
    • pp.376-380
    • /
    • 2004
  • In August 2003, the water quality of offshore waters along the Incheon coast of Korea was evaluated by biological evaluation using gametes, embryos and early development systems of a starfish species (Asterina pectinifera). As the result of performing biological evaluations on seawater samples from a total thirteen sites, the formation rate of normal larva was 16-68%. At seawater sample from site 5 and 13, formation rate of normal larva averaged 16%, the most abnormal rate hindering the early embryo development of the experimental animal, while that of site 3 averaged 68%, the highest formation rate of normal larva. At seawater sample from site 2, 4, 7, 9, 10, 11, 12, formation rate of normal larva averaged 33-54%, those which damage the development of early embryos slightly. At seawater sample from site 1, 5, 6, 8, 13, formation rate of normal larva averaged 16-28%, those which damage the development of early embryos strongly.

Lycopene-Induced Hydroxyl Radical Causes Oxidative DNA Damage in Escherichia coli

  • Lee, Wonyoung;Lee, Dong Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1232-1237
    • /
    • 2014
  • Lycopene, which is a well-known red carotenoid pigment, has been drawing scientific interest because of its potential biological functions. The current study reports that lycopene acts as a bactericidal agent by inducing reactive oxygen species (ROS)-mediated DNA damage in Escherichia coli. Lycopene treatment elevated the level of ROS-in particular, hydroxyl radicals ($^*OH$)-which can damage DNA in E. coli. Lycopene-induced DNA damage in bacteria was confirmed and we also observed cell filamentation caused by cell division arrest, an indirect marker of the DNA damage repair system, in lycopene-treated E. coli. Increased RecA expression was observed, indicating activation of the DNA repair system (SOS response). To summarize, lycopene exerts its antibacterial effects by inducing $^*OH$-mediated DNA damage that cannot be ameliorated by the SOS response. Lycopene may be a clinically useful adjuvant for current antimicrobial therapies.

Metabolic profiling study of ketoprofen-induced toxicity using 1H NMR spectroscopy coupled with multivariate analysis

  • Jung, Jee-Youn;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.54-68
    • /
    • 2011
  • $^1H$ nuclear magnetic resonance (NMR) spectroscopy of biological samples has been proven to be an effective and nondestructive approach to probe drug toxicity within an organism. In this study, ketoprofen toxicity was investigated using $^1H$-NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic test of ketoprofen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) derived from $^1H$-NMR spectra of urinary samples showed clear separation between the vehicle-treated control and ketoprofen-treated groups. Moreover, PCA derived from endogenous metabolite concentrations through targeted profiling revealed a dose-dependent metabolic shift between the vehicle-treated control, low-dose ketoprofen-treated (10 mg/kg body weight), and high-dose ketoprofen-treated (50 mg/kg) groups coinciding with their gastric damage scores after ketoprofen administration. The resultant metabolic profiles demonstrated that the ketoprofen-induced gastric damage exhibited energy metabolism perturbations that increased urinary levels of citrate, cis-aconitate, succinate, and phosphocreatine. In addition, ketoprofen administration induced an enhancement of xenobiotic activity in fatty oxidation, which caused increase levels of N-isovalerylglycine, adipate, phenylacetylglycine, dimethylamine, betaine, hippurate, 3-indoxylsulfate, N,N-dimethylglycine, trimethyl-N-oxide, and glycine. These findings demonstrate that $^1H$-NMR-based urinary metabolic profiling can be used for noninvasive and rapid way to diagnose adverse drug effects and is suitable for explaining the possible biological pathways perturbed by nonsteroidal anti-inflammatory drug toxicity.

The study for grading the area damaged by forest fire using LiDAR and digital aerial photograph (LiDAR 및 디지털항공사진을 이용한 산불 피해지의 등급화에 관한 연구)

  • Kwak, Doo-Ahn
    • Proceedings of the KSRS Conference
    • /
    • 2008.03a
    • /
    • pp.187-194
    • /
    • 2008
  • LiDAR는 일반 항공사진 및 위성영상과는 달리 사물의 높이를 측정할 수 있어 산림의 3차원 모델링을 수행할 수 있다. 본 연구에서는 이러한 LiDAR의 특성을 이용하여 산불이 발생한 강원도 양양지역 산림의 물리적 피해를 분석하였으며, 디지털 항공사진으로부터 Normalized Difference Vegetation Index (NDVI)를 추출하여 산림의 생물학적 피해를 분석하였다. 산림의 물리적 피해는 임관의 피해정도에 따라 지표면에서 반사되는 Point Data의 개수의 비율로서 추정을 하였다. 피해정도의 고저(高低)를 구분하는 기준은 통계적 방법 (Jenk's Natural Break) 으로부터 추정된 0.3594을 사용하였으며, 지표면 반사비율이 0.3594 이상인 경우 물리적 피해정도를 고(高, Serious Physical Damage; SPD), 지표면 반사비율이 0.3594 이하인 경우 물리적 피해정도를 저(低, Light Physical Damage; LPD)로 나타내었다. 또한 생물학적 피해는 일반적인 NDVI 값의 범위(-1

  • PDF

An Intelligent Robotic Biological Cell Injection System (바이오 셀 조작용 지능 로봇 시스템)

  • Shim, Jae-Hong;Cho, Young-Im;Kim, Jong-Hyeong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.411-417
    • /
    • 2004
  • Recently, instruments and systems related on biological technology have been enormously developed. Particularly, many researches for biological cell injection have been carried out. Usually, excessive contact force occurring when the end-effector and a biological cell contact might make a damage on the cell. Unfortunately, the excessive force could easily destroy the membrane and tissue of the cell. In order to overcome the problem, we proposed a new injection system for biological cell manipulation. The proposed injection system can measure the contact force between a pipette and a cell by using a force sensor. Also, we used vision technology to correctly guide the tip of the pipette to the cell. Consequently, the proposed injection system could safely manipulate the biological cells without any damage. This paper presents the introduction of our new injection system and design concepts of the new micro end-effector. Through a series of experiments the proposed injection system shows the possibility of application for precision biological cell manipulation such as DNA operation.

The Effect of Heat Treatment on Biological Response and Mutation Frequency of Gamma Irradiated Rice Seeds (수도종자의 방사선조사에 있어서 열처리의 효과)

  • Chang-Yawl Harn;J. L.Won;Kwang-Tae Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.10
    • /
    • pp.45-50
    • /
    • 1971
  • For the purpose of finding out the effect of heat treatment on biological response and mutation rate, rice seeds were heat treated before and after gamma irradiation. 1. At a dose of 20 KR, pre-irradiation heat treatment showed reduced biological damage and increased mutation rate as compared with non-heat treatment. 2. Mutation frequency was increased in post-treatment of heat shock than in pre-irradiation heat treatment and non-heat treatment. 3. Pre-irradiation heat treatment at 6$0^{\circ}C$ for 30 minutes markedly reduced the biological damage and increased the mutation rate. 4. Mutation spectrum in heat treatment was different from non-treatment.

  • PDF

High fat diet-induced brain damaging effects through autophagy-mediated senescence, inflammation and apoptosis mitigated by ginsenoside F1-enhanced mixture

  • Hou, Jingang;Jeon, Byeongmin;Baek, Jongin;Yun, Yeejin;Kim, Daeun;Chang, Boyoon;Kim, Sungyeon;Kim, Sunchang
    • Journal of Ginseng Research
    • /
    • v.46 no.1
    • /
    • pp.79-90
    • /
    • 2022
  • Background: Herbal medicines are popular approaches to capably prevent and treat obesity and its related diseases. Excessive exposure to dietary lipids causes oxidative stress and inflammation, which possibly induces cellular senescence and contribute the damaging effects in brain. The potential roles of selective enhanced ginsenoside in regulating high fat diet (HFD)-induced brain damage remain unknown. Methods: The protection function of Ginsenoside F1-enhanced mixture (SGB121) was evaluated by in vivo and in vitro experiments. Human primary astrocytes and SH-SY5Y cells were treated with palmitic acid conjugated Bovine Serum Albumin, and the effects of SGB121 were determined by MTT and lipid uptake assays. For in vivo tests, C57BL/6J mice were fed with high fat diet for 3 months with or without SGB121 administration. Thereafter, immunohistochemistry, western blot, PCR and ELISA assays were conducted with brain tissues. Results and conclusion: SGB121 selectively suppressed HFD-induced oxidative stress and cellular senescence in brain, and reduced subsequent inflammation responses manifested by abrogated secretion of IL-6, IL-1β and TNFα via NF-κB signaling pathway. Interestingly, SGB121 protects against HFD-induced damage by improving mitophagy and endoplasmic reticulum-stress associated autophagy flux and inhibiting apoptosis. In addition, SGB121 regulates lipid uptake and accumulation by FATP4 and PPARα. SGB121 significantly abates excessively phosphorylated tau protein in the cortex and GFAP activation in corpus callosum. Together, our results suggest that SGB121 is able to favor the resistance of brain to HFD-induced damage, therefore provide explicit evidence of the potential to be a functional food.

Quantitative Analysis for Termites Damage of Wooden Heritage using Ultrasonic Pulse Velocity (초음파 전파속도법을 이용한 목조 문화유산 흰개미 피해의 정량 평가)

  • Ahn, Jae-Cheol
    • Journal of architectural history
    • /
    • v.24 no.5
    • /
    • pp.41-48
    • /
    • 2015
  • Quantitative analysis of termites damage is important in terms of conservation and maintenance of wooden cultural heritage buildings, because termites makes cavities and decreases the section area of wooden structural members. The purpose of this study is to forecast the range and spread of termites damage in the wooden structural members by using ultrasonic pulse velocity method. Ultrasonic pulse velocity has been used as one of non-destructive test to analysis the internal defect by using difference velocity between medium material and cavity. This method would be effective to analysis termites damages. From the result of the ultrasonic velocity test, the loss rate of area effected by termites damage had a strong correlation with ultrasonic velocity. And it is possible to predict the loss rate of area from by termites damage by using regression equation in the case of structural member of fine tree.

Structural damage detection of steel bridge girder using artificial neural networks and finite element models

  • Hakim, S.J.S.;Razak, H. Abdul
    • Steel and Composite Structures
    • /
    • v.14 no.4
    • /
    • pp.367-377
    • /
    • 2013
  • Damage in structures often leads to failure. Thus it is very important to monitor structures for the occurrence of damage. When damage happens in a structure the consequence is a change in its modal parameters such as natural frequencies and mode shapes. Artificial Neural Networks (ANNs) are inspired by human biological neurons and have been applied for damage identification with varied success. Natural frequencies of a structure have a strong effect on damage and are applied as effective input parameters used to train the ANN in this study. The applicability of ANNs as a powerful tool for predicting the severity of damage in a model steel girder bridge is examined in this study. The data required for the ANNs which are in the form of natural frequencies were obtained from numerical modal analysis. By incorporating the training data, ANNs are capable of producing outputs in terms of damage severity using the first five natural frequencies. It has been demonstrated that an ANN trained only with natural frequency data can determine the severity of damage with a 6.8% error. The results shows that ANNs trained with numerically obtained samples have a strong potential for structural damage identification.