• 제목/요약/키워드: Biological aerated filters (BAF)

검색결과 4건 처리시간 0.019초

Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

  • Ha, Jeong-Hyub;Ong, Say-Kee;Surampalli, R.
    • Environmental Engineering Research
    • /
    • 제15권2호
    • /
    • pp.79-84
    • /
    • 2010
  • Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a waste-water temperature at $13^{\circ}C$. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg $NH_3-N/m^3$-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

Modified BAF 공정에서 HRT 및 역세주기가 질산화 미생물의 군집에 미치는 영향 (Effects of Nitrifying Bacterial Communities with Different HRTs and Backwashing Periods in Modified BAF Process)

  • 정철수;박정진;주동진;권수연;최원석;변임규;박태주
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.920-926
    • /
    • 2007
  • The upflow Biobead$^{(R)}$ process, one of biological aerated filters (BAF), which was used commercially, invented for removal of organic materials and nitrification. This process was modified to enhance the ability of denitrification through the induction of pre-anoxic tank. In this research, we investigated the effects of hydraulic retention time (HRT) and backwashing period in aerobic tank. The characteristics of nitrifying bacteria, which are composed of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), also investigated using fluorescence in situ hybridization (FISH). Even though the HRT was shortened, the efficiency of nitrification was not decreased when the organic loading rate and ammonium-nitrogen loading rate were $2.10kg/m^3/day$ and $0.25kg/m^3/day$, respectively. And then the distribution ratios of AOB and NOB showed the similar patterns. However, when the backwashing period was lengthened from 12 hours to 24 hours in aerobic 1 tank, the nitrification efficiency was decreased to 63.9% from 89.2%. The results of FISH explained that this decrease of nitrification efficiency was caused by the decrease of distribution ratio of AOB in aerobic 1 tank. The nitrification efficiencies of aerobic 1 and aerobic 2 tank were increased when the backwashing period was lengthened because of relative high distribution ratios of nitrifying bacteria.

Modified BAF 공정을 이용한 독립적인 무산소조에서 탈질미생물 군집의 특성 (Characterization of Denitrifier Community in Independent Anoxic Reactor Using Modified BAF Process)

  • 박정진;정영록;유재철;허성호;최원석;변임규;이태호;박태주
    • 대한환경공학회지
    • /
    • 제28권7호
    • /
    • pp.752-756
    • /
    • 2006
  • 최근 수계의 총질소(T-N) 규제가 강화되면서 기존 BAF 공정의 개선을 위해 독립적인 무산소조가 추가로 도입되었다. 본 연구에 사용된 공정은 유기물과 질산화 중심으로 개발 된 기술인 $Biobead^{(R)}$공법으로 상용화된 상향류의 BAF공정의 하나이다. 독립적인 무산소조의 도입의 타당성을 검토하기 위해 분자생물학적 방법의 하나인 PCR-DGGE기법이 수행되었다. 두 가지 type의 nitrite reductase genes를 통해 진행되었는데, nirS로 암호화된 cytocrome $cd_1$ nitrite reductase gene과 nirK로 암호화된 Cu를 함유한 nitrite reductase gene이다. 이러한 탈질 기능유전자를 이용하여 PCR-DGGE를 통해 탈질 목적으로 순화된 독립적인 무산소조의 탈질미생물의 군집을 해석하였다. PCR 증폭결과, 탈질을 수행하는 무산소조 내에서는 nirS와 nirK유전자 가운데 nirS유전자만 검출되었고, DGGE 분석결과, 최초 식종원으로 이용된 활성슬러지에서는 상대적으로 많은 band들이 검출되는 반면, 무산소조 내에서는 운전일수와 nitrate 부하량이 증가할수록 단일 band로 우점화 하는 경향을 나타내었다. DGGE band에 대한 염기서열 분석결과, 식종 슬러지의 경우 다양한 uncultured bacteria가 나타났으나, nitrate 제거율이 높은 안정화된 무산소조에서는 alcaligenes faecalis 등 특정 탈질미생물이 우점화 되는 것으로 확인되었다. 결론적으로 이러한 탈질미생물 군집특성을 가지는 무산소조의 도입은 96%이상의 안정적인 탈질을 가능하게 하였으며, BAF 공정 개선을 위한 독립적인 무산소조의 도입은 적절한 것으로 판단되었다.

BAF를 이용한 2차 처리수의 재이용 가능성 및 강우시 하수처리장 월류수의 처리 (Reuse Possibility of By-pass Flow and Secondary Effluent using BAF)

  • 안지훈;박종복;김성원;박재홍;하준수;최의소
    • 한국물환경학회지
    • /
    • 제21권2호
    • /
    • pp.190-195
    • /
    • 2005
  • The laboratory and pilot scale BAFs (biological aerated filters) were operated with 0.3 hr to 1.1 hr EBCT(empty bed contact time) at a maximum filtration rate of $472m^3/m^2/day$ as a treatment method for reuse of secondary effluent and by-pass flow in this study. The effluent BOD and SS were generally 3.5 to 5 mg/L and 2 to 3 mg/L, respectively with 2ndary effluent, but the SS concentrations increased to 4 to 8 mg/L with the increased flow rates of by-pass flow. Potential nitrification rates were very high, but the nitrogen removal efficiencies were low due to the limited carbon sources. Bypass of a part of primary effluent seemed to be desirable to increase the nitrogen removal. Disinfection must be furnished for the reuse of BAF effluent.