• 제목/요약/키워드: Biological Substance

검색결과 327건 처리시간 0.027초

서양의학 독성학의 기본적 개념 및 한약의 $LD_{50}$ (Basic Concepts of Western Medicine Toxicology and $LD_{50}$ in Herbal Drugs)

  • 박영철;이선동;박경식
    • 대한예방한의학회지
    • /
    • 제3권2호
    • /
    • pp.91-100
    • /
    • 1999
  • Today, toxicology is used for many purpose, in many fields. Classification of special toxic effect is related next 4 important principles. 1. The chemical substance must move to target organ or tissue that can induce Biological effect. For this movement, we have to understand the physical-chemical characteristic of substance, and the rout of absorption, metabolism, diffusion and excretion of toxic substance. 2. Every biological effect that induced by chemical substance is not harmful. For example, some specific chemical substance is not harmful in liver enzyme system. 3. The strength of biological effect induced by chemical substance is deep related with dose. Nearly all substance is not effective below the specific dose, and it may toxic to death over the specific dose. It is the 'Dose - response relationship' But carcinogen may toxic whether it is law dose or not. 4. The information that was obtained by experimental animal test, could have to adapt in human biology. Because biological effect of chemical substance could be different in every biological species. In past, drugs was obtained by animal or plants. But in the future, it could be obtained by biochemistry, and genome project. Therefore, in Oriental medicine, research and approach is needed at this time, and have to develop new method of experience in toxic method.

  • PDF

Identification of FM001 as Plant Growth-Promoting Substance from Acremonium strictum MJN1 Culture

  • JUNG, JAE-HAN;DONG-MIN SHIN;WOO-CHUL BAE;SOON-KWANG HONG;JOO-WON SUH;SANGHO KOO;BYEONG-CHUL JEONG
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권2호
    • /
    • pp.327-330
    • /
    • 2002
  • A plant growth-promoting substance, FM001, was isolated from the culture broth of Acremonium strictum MJN1. The purification steps included solvent extraction, adsorption chromatography using Diaion HP20, TLC on silica, and HLPC using a C-18 column. The purified FM001 enhanced rice seedling growth by $11.1\%\;and\;34.0\%$ of the dried weight of the shoots and roots, and also radish growth by $26.5\%\;and\;23.7\%$ of the top length and dried weight. FM001 also significantly promoted the growth of red pepper by increasing $32.7\%$ of fruit weight and $11.3\%$ as regards the height. FM001 consisted of C, H, O, N, and S, and its molecular weight was determined to be 537.78 Da. The structure of FM001 resembled brassinosteriods, and it would appear to have great potential as an effective bio-fertilizer.

조류를 이용한 수계모니터링 시스템에서 뉴럴 네트워크에 의한 실시간 독성물질 판단 (On-line Identification of The Toxicological Substance in The Water System using Neural Network Technique)

  • 정종혁;정하규;권원태
    • 한국물환경학회지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Biological and chemical sensors are the two most frequently used sensors to monitor the water resource. Chemical sensor is very accurate to pick up the types and to measure the concentration of the chemical substance. Drawback is that it works for just one type of chemical substance. Therefore a lot of expensive monitoring system needs to be installed to determine the safeness of the water, which costs too much expense. Biological sensor, on the contrary, can judge the degree of pollution of the water with just one monitoring system. However, it is not easy to figure out the type of contaminant with a biological sensor. In this study, an endeavor is made to identify the toxicant in the water using the shape of the chlorophyll fluorescence induction curve (FIC) from a biological monitoring system. Wem-tox values are calculated from the amount of flourescence of contaminated and reference water. Curve fitting is executed to find the representative curve of the raw data of Wem-tox values. Then the curves are digitalized at the same interval to train the neural network model. Taguchi method is used to optimize the neural network model parameters. The optimized model shows a good capacity to figure out the toxicant from FIC.

청국장 발효중 점질성 고분자 물질의 생성에 관한 연구 (A study on the production of viscous substance during the Chungkookjang fermentation)

  • 이용림;김성호;정낙현;임무현
    • Applied Biological Chemistry
    • /
    • 제35권3호
    • /
    • pp.202-209
    • /
    • 1992
  • 청국장 발효시 생산되는 점질물에 대하여 연구하기 위하여 볏짚으로부터 점질물 생성능이 우수하고 좋은 풍미의 청국장 재조균 SB-1를 분리하여 Bacillus sp.로 동정하였다. 이들 균주들은 $42^{\circ}C$에서 48시간때에 가장 많은 점질물을 생산했으며, M.S.G.의 첨가시 점질물 및 아미노태질소와 암모니아태질소의 성분에는 큰 변화가 없었으나, Sucrose 첨가시 점질물과 아미노태질소의 생산량은 증가한 반면 암모니아태질소는 오히려 감소하였다. 점질물의 분자량은 $15,000{\sim}65,000$ 정도로 추정되었다. 점질물은 G.C.와 HPLC의 분석결과 주로 glutamate와 fructose로 구성된 것으로 나타났으며, 배지조성의 차이에 따라 다른 고분자물질이 검출되었다.

  • PDF

Streptomyces속 균주가 생성한 물질의 생물활성에 관한 연구 제 I보 생성물질의 분이및 그 생화학적성질 (Studies on the Biological Active Substance produced by a Strain of Streptomyces sp. Part I. Isolation and Biological Characterization of the Substance)

  • 송방호;서정훈
    • 한국미생물·생명공학회지
    • /
    • 제3권2호
    • /
    • pp.63-68
    • /
    • 1975
  • Streptomyces속에서 분이한 물질의 생물학적 활성을 검색하던 중 어유에 대한 독성물질을 강하게 생성하는 균 1수를 선별하여 그 생화학적 성질을 검토하였다. 1. 분이된 물질의 독성은, 예로서 Pseudorasbora parva T. et. S. (체중 0.~0.5g, 신장 3.0~4.0cm)에 대한 살어역은 5ug/ml에서 30분, 25ug/ml에서 50분이었으며 Carassius carassius L. (체중 2.0g, 유장 5.0cm)온 50ug/m1용액에서 70분간 생존할 수 있었다. 2. 본 물질은 산성 및 유기용매에서는 비교적 안정하여 pH 4.0에서 15시간까지 처이하였을 경우, 또 CHCI$_3$, acetone 용액에서 약 5일간까지 처이하였을 때에도 거의 독성이 감소되지 않았다. alkali성 및 열에 대하여서는 불안정한 물질로써 pH 8.0에서 5분간 처이하였을 때 물질이 상당히 실활되었으며 6$0^{\circ}C$以上의 온도에서는 비교적 격히 실활되었다. 3. 25ug/m1 수용액에서 Pseudorabora parva에 대하여 약 20분간 이상 처이로서는 회생이 불가능함을 알았다. 이상과 같은 성질을 가진 본 독성물질은 선별된 균주의 배양여액을 pH 3.0으로 하강하여 NaCl로서 포화시킨 후 CHCl$_3$에 전용하여 농축하르로써 비교적 간단한 방법으로 분리할 수 있었다.

  • PDF

녹비식물 혼합재배에 휴믹물질 투입이 정화처리토양의 생물학적 토양 건강성 지표에 미치는 영향 (Effects of Mixed Planting of Green Manure Crops Supplemented with Humic Substance on the Biological Soil Health Indicators of Reclaimed Soils)

  • 배범한;박혜선;강수아
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제26권5호
    • /
    • pp.49-59
    • /
    • 2021
  • The effects of green manure crops, hairy vetch and sesban, supplemented with HS (humic substance) on biological soil health indicators was studied in a pot containing two kinds of reclaimed soil previously contaminated with petroleum hydrocarbons; a soil remediated by land-farming (DDC) and another soil by low-temperature thermal desorption (YJ). Treatments include no plant (C), plants only (H), and plants+2% HS (PH), which were evaluated in a pot containing respective soil. Biological indicators include microbial community analysis as well as soil enzyme activities of dehydrogenase, 𝛽-glucosidase, N-acetyl-𝛽-D-glucosaminidase (NAG), acid/alkaline phosphatase, arylsulfatase, and urease. Results showed an increase of enzyme activities in pot soils with plants and even greater in soils with plants+HS. The enzyme activities of DDC soil with plants (DDC_P) and with plants+HS (DDC_PH) increased 1.6 and 3.9 times on average, respectively than those in the control. The enzyme activities YJ soil with plants (YJ_P) and with plant+HS (YJ_PH) increased 1.8 and 3.8 times on average, respectively than those in the control. According to microbial community analysis, the relative abundance of nitrogen-fixing bacteria in DDC and YJ soil was increased from 1.5% to 7% and from 0 to 5%, respectively, after planting hairy vetch and sesban. This study showed that mixed planting of green manure crops with a supplement of humic substance is highly effective for the restoration of biological health indicators of reclaimed soils.

Antifungal Cyclopeptolide from Fungal Saprophytic Antagonist Ulocladium atrum

  • Yun, Bong-Sik;Kwon, Eun-Mi;Kim, Jin-Cheol;Yu, Seung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1217-1220
    • /
    • 2007
  • The saprophytic fungus Ulocladium atrum Preuss is a promising biological control agent for Botrytis cinerea in greenhouse- and field-grown crops. However, despite its known potent antifungal activity, no antifungal substance has yet been reported. In an effort to characterize the antifungal substance from U. atrum, we isolated an antibiotic peptide. Based on extensive spectroscopic analyses, its structure was established as a cyclopeptolide with a high portion of N-methylated amino acids, and its $^1H$ and $^{13}C$ chemical shifts were completely assigned based on extensive 1D and 2D NMR experiments. Compound 1 exhibited potent antifungal activity against the plant pathogenic fungus Botrytis cinerea and moderate activity against Alternaria alternate and Magnaporthe grisea.

중독 정신 병리의 이해 : 뇌영상 연구를 중심으로 (Neurobiology of Addiction Based on Neuroimaging Evidence)

  • 민정아;김대진
    • 생물정신의학
    • /
    • 제18권2호
    • /
    • pp.61-71
    • /
    • 2011
  • Substance addiction is a chronically relapsing disorder that has been characterized by a vicious cycle composed of intoxication, craving/anticipation, withdrawal, and response inhibition/bingeing. Here we summarize the findings from neuroimaging studies in addiction according to these behavioral components and suggest the integrated neurobiological model of drug addiction and related brain correlates. The roles of various prefrontal regions, thalamus, memory circuit, anterior cingulated, and insula were also suggested in addition to those of classical mesolimbic dopaminergic system and its responsivity. Limited studies of behavioral addiction demonstrated a similarity with substance addiction on the neurobiological basis. Based on the current understanding of neurobiology of addiction, further researches on interactions of behavioral components and their brain correlates, behavioral addiction, and therapeutic applications will be desired.

Pseudomonas tolaasii 배양액으로부터 독성물질의 동정 (Identification of Mushroom Brown Blotch Causing Agent from Pseudomonas tolaasii Culture Broth)

  • 박철진;오성기;전억한
    • Applied Biological Chemistry
    • /
    • 제37권5호
    • /
    • pp.392-396
    • /
    • 1994
  • 버섯의 cap에 갈변병을 유발하는 독성물질을 P. tolaasii 배양액에서 추출, 정제하였다. 독성물질의 정제는 silica gel chromatography, mass spectrum과 NMR을 사용하였다. 정제된 독성물질은 amylamine group의 aminobenzene인 것으로 밝혀졌으며, UV spectrum으로 분석한 결과 234 nm에서 확인되었고, 융점은 $76^{\circ}C$ 이었다.

  • PDF